# 26e2fa07 - MATH 026 EXAM II, FORM A FALL 2007’ 1‘ Find...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 026 EXAM II, FORM A FALL 2007’ 1‘ Find the Period 0r 3! = 49-03(53)- 3. Identify the graph of one complete cycle of y = sin(1‘r.:c + a) 5 5 b _ ) 271' 4 L) E 21r 5 e) E x. . A . ‘ 7 2. 1‘ 1nd the amphtudc and phase shift 0f1 = —3 5111(213 — . . . 7 a) Amphtude = -3: Phase Shlft = —E 14 b) Amplitude = ,3, Phase Shift = l , . 271' u) Amphtude = 3, Phase Shlfc = 3 . r ‘ . 7 d) Amph’mde = 3, Phase bluff. = J , 7 c) Amplitude : 3, Phase Shlft = ﬁg MATH. 026 4. Which of the following equations corresponds to the graph shown below. 2 y = —2 (303032: —- 2) y = —2 cos(51ra: — 27:) y = 2cos{2mr — 511-} y = 2c03(51' — 271'} y = 2cos(2:r. — 5) U'IIN- EXAM 11, FORM A U'Ilsb FALL 2007 5. Which of the following is the graph of y = 2cos(—z + 2)‘ MATH 026 EXAM ll, FORM A FALL 2007 5V Evahmte sec < Eilﬁl 9. Which of the following is no.5 a. solution to sin2 (0) — 3 (3052 (6) = O: 3 ,n. 2 a} — — 3 a) 3 2 b) 2 b) F“ J3 31W \/g C) y C) ? 4 3 d) I d) _ 3 ﬂ e) 571' J3 3 e) ~— 3 10. Find all solutions to cos(2x) cos(;i:) + sin(2m)sin(r) : l for 0 g 7‘ Which of the following equations corresponds to the graph shown 9<27T 2 below. ' 1 4 a) 0, .3 :3 11' 577 1;. _ _ —1 ) 3’ 3 17 71' -2 0 1' § 371' 471' _ l _, __ 3 El 4 3 '4 e) 4—”, 3 3 -5 1 — sin“(9) 11. S' H — [mp ] Y 1 + \$11120?) a) y = 3cos(7:c) — 2 2” a) sin2 (0) b) y = —5cos(~7—J:) b) c0820?) c) y =6cos(2?wx) 7‘2 c) tangm) d cl) y=6cos(Z-J:—2) ) l 7 e) csc2(6) e) y = 3 cos(w — 2) cos(1‘) + 1 12. Simplify :L' 8. Simplify the expression 3 |cos(9)| if 9 = sin—1 A cot(m) a) cse(:c) + cot(a:) d) —V 9 — 1'2 b) SMILE) + 0012(23) b) J9 — .132 c) sln(:i:) + tan(ﬂ:) c 112 -v } ‘/ 9 (1) 005(1) + tan(:r.) d) e) sec(r) + tan(q:) l e) 9 _ T MATH 026 EXAM II, FORM A FALL 2007 _ - o 3 13' EV"l“ate “(105 ) 17. If 605(A) = Z and A 5 Q1, ﬁnd sin a) ﬁ 3x5 2 a) “s— b) Jig-4+3 b) 8 c) frﬁ m 4 C) T d) "LT/5 «1) —£ 4 c) g e) “2 4 14, Find an equivalent expression for sin(7:r) 005(5w) — 1305(7r) sin(5m) 1 _ I t ' ‘1 — 18 Eva 11a 9 cos (2 cos a) sin(22:) 3 a) — b) cos(2:c) 5 C) siILUZm) [3) _g d) cos(123:) 4 C __ e) —sin(2:r) ) 5 d) —§ 15. If tan(9) = -—2 and 6 e Q11 ﬁnd tan(26) 2 e _ 2 ) x/E a) r— 3 2 19. Solve 25511109) — x/‘E = 0 for 0 g 6<27r b} — '3 7r 371' c) —4 a) E, 71“ 4 d) 7 b 3 5—71- .5 ) 4‘ 4 4 __ 371' 511‘ e) 3 C) T’ I 1 d) 511‘ 711' 16. If sin(A) : r}; and A E QHI ﬁnd Ein(2A) 4 ’ 4 e) No solution a) —-:—2 b) 20. Solve 2.9111(3) =sin(2:r) for 0 £0<27r 16 37: 51¢ a — 15 a) 4’ 4 4 1r Sr 15 M Z) I d) — 8 c) 0,77 15 e) d I 71 11—“ 8 ) 2’ 6‘ 16 6!) All I in the interva! satisfy the equation Math_26_Exam_II.key EXAM II~ FORM A l. D 2. D 3. A 4. B 5. E 6. D 7. A 8. B 9. C 10. B 11. B 12. C 13. D 14. A 15 D 16 E 17. E 18. B 19. A 20. C Page 1 ...
View Full Document

## This note was uploaded on 04/02/2008 for the course MATH 026 taught by Professor Desesa,blaisephi during the Fall '08 term at Pennsylvania State University, University Park.

### Page1 / 5

26e2fa07 - MATH 026 EXAM II, FORM A FALL 2007’ 1‘ Find...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online