This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 41'. 43. 5'0. X ~ Eiﬂ{6, .10} n. _ .5.
a Pix= n= [Jtmxa—p)" * =[ 1](.1}1(.9}5 = .3543 11 PKX21J=l[P{X=UJ+P{X=1}] _
mee.weleeewP{X = 1}: .3543,aed P{X= s)=[:J(. I)“ (.9115 = .5314.
HeneeP(xe 2): 1 — [.3543+.5314]=.1143 I c. Either 4 or 5 geblets must be selected
1} Select4 goblets with zero defects: P0: = n} = [:](.1)“{.9)4 = .6561.
ii) Select 4 geblets, one of which has a defect, and the 5th is good: [[:](.1)1(.9)3]x.9 = 25244 So the desired probability is .6561 + 26244 = .91354 Let S = comes to a cumplete stop, so p = .25 , n = E! a. PIEX E 15] = B(ﬁ;2ﬂ,.25] = .Tr'Eﬁ b. P(X = ti] = hﬁﬁﬁﬂ,.2ﬂ) = Bﬂﬁﬂﬂ,.25} — Bfﬁ;2ﬂ,.25} = .TEﬁ — .ﬁl? = .lISB
c. PIE{2(3):l—P[X£5}=l—B(5;20,.25)=1—.61?=.333 d. EOE} = [2ﬂ]{.25} = 5. We expect 5 of the next 2D to step. X~Bh1(lﬂ, .150}
a. P(X eeJ=1—P{xs 5}: 1 —B(5;2ﬂ,.6ﬂ}= 1 — .351: .533 b EJEXJ=ns=ilﬂII(ﬁ)=ﬁ; VDQ=np(l—pl=(lﬂK61I(4)=2.4;
ox: 1.55 E{X)i5,=(4.45,155).
We desire P{5 £XE?}=P{XE?}—P{XE4}=.333 —.lﬁﬁ= .56? c. HEEXSTJ=P{X5?]—P(X£EJ=.333—.012=.321 75.
a. P{X 5 3] = F{s;5} = .932 b. P(X = s} = F{3;5) — Etta) = .ﬂﬁS e. mem=1—P{x5s}=ses d. H5 5 x. 5 3) = H35} — F{4;5} = .492 e. P(5 5 x 5 3) = F05} — 151:5) = .SﬁT—.ﬁlﬁ=.251 b. P{X22]=l—P[X£ 1)=1—F(1;2}=1—.932=.ols e. PI[15t doesn’t r1 2nd doesn't} = PI:1=it doesn’t} P[2’1'i doesn't} a. For a two hour period the parameter of the distribution is 11 = (4)12} = E, b. For a 30 minute period, it = (43(5) = 2, so P{X=ﬂ)=F(ﬂ,2) = .135 73. a_ P{X=l}=F{l;2)—F(ﬂ;1}=932'319=1ﬁ3
= (.319){519) = .671
33.
so p0: = m} = F(1ﬂ;3} — FEES) = 1399
; E{X)=Iu:=2
1. 1 2]”
II 5 5
xdx=112 3. Graph of ﬁx) = .093?5{4 — :2) I15 {Li 2
2 3
1:. Pp: H1) = L .093?5(4 — x2 )dx = .ﬂ93?5(41 3%)] = .5
U 1
c. pm a: x: 1) = LﬂQSTS{r—l —x? )dx = .58?5 .5
d. Fiﬁ—.5 ﬂaws): 1—P(_5 5X5 .5]: 1 — L.D93?5(4— fjdx
=1 — .36?2=_ﬁ323 a. ﬁﬂxﬁmx: fie—“Wax: —e"‘2”92t = 0—H) = 1 Elm 2m: 2 2
1:. malt0F L: J‘"{I;I5‘)::I'x=Iﬂ Giza" ”‘9 dx
2W
=—+e"‘j”'5‘”]tl m—.1353+1=.364? P(X *4 20D) = PIX 5 20(1) Rs 364?, since 1; is continuous.
mama}: 1 magma .1353 alumni: 1“”
e = L DD
(1. H1m5x52n0)= mf(x;9)dx=— m, 2.4?12 ﬂ. me}O,P{X5x)=
r f(y;9}dy = ”ElEE—ylugitﬁ = _g‘J’2’292t =1_e—x11‘292
4: e ...
View
Full Document
 Fall '04
 Eisenstein

Click to edit the document details