**Unformatted text preview: **S xx and ˆ σ = SSE/ ( n-2) . It can be shown that SSE = S yy-S 2 xy /S xx , we get S ˆ β 1 = 1 √ n-2 q S yy S xx-( S xy S xx ) 2 . Then we reject H if | t | > t α/ 2 ,n-2 at 100(1-α )% signiﬁcance. We don’t usually compute the test statistic by hand. Use R-package. Example. We continue Lecture 19 example. >summary(lm(y˜x)) Call: lm(formula = y ˜ x) Residuals: Min 1Q Median 3Q Max-10.908 -6.312 1.758 4.354 10.836 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 29.48 13.23 2.22 0.06 x 0.55 0.17 3.12 0.01 *---Signif. codes: 0 ‘ *** ’ 0.001 ‘ ** ’ 0.01 ‘ * ’ Residual standard error: 7.647 on 8 degrees of freedom Multiple R-Squared: 0.5519, Adjusted R-squared:0.4959 F-statistic:9.854o n 1 and 8 DF, p-value: 0.01383...

View
Full Document

- Fall '04
- Chung
- Statistics, Linear Regression, Normal Distribution, Regression Analysis, maximum likelihood estimation, yj, cj yj, linear model Yj