Sloution to problem set 4

Probability and Statistics for Engineering and the Sciences (with CD-ROM and InfoTrac )

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: S|o4 EEEEEEEEEEEI 78. Haysth works) : Pt I - 2 works LJ 3 -- 4 works] 2 P11 1 w 2 works} + P{ 3 — 4 works} - P( I -— 2 workxfl 3 -— 4 works) 2 P(_l wurksu 2 works} + PC! works fl 4 works) — P( I — 2 ) 0 PIS — 4} =( .9+.9-.81] + (HHS) '- (.9+.9-.81)(.9)(.9} : .99 + .81 - .8019 2 99%| 83. a. Let D. : detection on ISI fixaliun. D3 : dctectinn on 2IHI fixation. P(dctecti0n in at most 2 fixations) : PILDIJ+ P'fo (“a D1) : 11ml ) + P(D2|DI')P(D1) =P+P£l "P}=P(2"P3- h. DBfiI‘IE 13., D3, .Dn as; in 3. Then P{:1t moat n fixatiuns} =P{Dl)+P(D.’ r‘“. D3} +P{Dl’ (‘1 D3’ n D3)+ ...+ P{D]’ n D1’ (1 (‘1 D....’ n DI.) =p+p{l --p]+pn[l--}:I)'+...+p(l--}:I)“'I 1—(1—p)” 1—(1- p) Altcrnalivcly. P(at must n fixaliuns) : l - P{e1t least n+l are req'd} =p[l+[l -p}+{| -p)1+...+(I—p)h'1]: p! =]_(1_p)fl = l — Pfim detection in l5l n l’ixations) = l — P(D.' flDl’ fl nDn’) I l _ U m P)” c. P{no detcction in 3 fixatilms} : {I — [1)] d. Ptpasses inspection] 2 PHnnt flawed} LJ {flawed and passesh : P{1wtf]awed}+ Pt'flawed and passes} = .9 + Ptpasses | flawed}l P(f1awed) : .9+(1 n pf“) . _ 3 e. PU'lawed Ipassed} = W = Firm-9d) .9 + .1(1— p)- 3 Fur p = .5. Ptflnwed I passed} : ' 1L5) = _0137 .9+.1(.5}3 When three experiments are performed. there are 3 different ways in which detectinn can occur on exactly 2 of the experiments: {i} #1 and #2 and not #3 {ii} #I and not #2 anti #3: (iii) nnt#l and #2 and #3. If the impurity is present, the probability of exactly 2 deteetinns in three (independent) experiments is (.3)(.8)[.2J + {.3]{.2](.3] + (.2}(.8){.8} = .384. If the impurity is absent. the analogous probability is 3(.l}(.l )(9) = .027. Thus Ptpresent I detected in exactly 2 out 01—3} 2 Pidet ecfed.in.exaefly.2 r“. present) P(det ected.in.exnctiy.2] (.384)(.4) : —= .905 (.334)(.4) + (.027)(.6} Ill-1. .15 .5 WHERE i .0525 R1~=CR3~=CR2 // .15 .25 G R3421 IDSFS f5 .El?5 El 1-:R2-cR3 .15 .525 .1 5 I I I 3. PH] I R. n: R: q RILI = — = .fi? . F{B | R. {R3 n: RI1]=.33. dummy ab granule. _ IS + .075 .UfiZS h. Pit] IR. (RI. c R1] : = .E‘MI c .flfi. 5L] cluxsit'y up. hasfll. .2 I25 JETS PM I R_. c R. < R1: = = .flfifi? . 5L1 clmi r3; in; basalt. .56125 c. Ptrrmllcum Elam-1isz P113 L'lamaii' i-J..‘i G: + P“: clzmsaif :15 B] : Piclafihifax U- f BJPfBj + Htlamii' 3:; E- | fill-7(5) ZHRIifliikaIBH.?35+P1R1{R;{R;UIR4; {R-I (R; IGJLESI = [.HHLTSI + [.25 + .lfiHlSII = .I?5 :1. Fur wins: values; of pwil] P16 |R.-=:R_.::R_1j::- .5. PH] ER. a: R_». : R112:- :1 P15!R_.~:R. q R1] :- j'.’ .51 .15 I Ham. {R3 cm]: —p=—P:-.5 ifl' p 2:— .fip+.l£1-pj .I+.5p T .25}: __ 4 BEER. {Rd {R3}: —::_5 .H p :— _25p+_2{1—p} 9 Jim _. I4 . . FIBER. {R.n:Rl1= — 3:- .5 M p }— 1muslm51nclwe] .l5p+.TII.'i-p,1 I? I4 II' p 3? E aha-aya- finally as granile. HIT. . I | a. Pliallmcurrfctrmm}: —=—=.fl*4|7" 4X3X2>¢l 24 h. The ‘i uulcumm which grit-id Luann-cut assignnwnh are; 2143. 234 t. 1-4 | 3. 3] 42, 3412. El 342L4l11432Land43|15u Frau incurred] : — 2.315 24 Section 3.2 l]. I1. [LS 0.4 I13 0.2 III Ill] 'I-I.I"\r'| -'|u'l -_1mr. a. L'. Pix =IEI‘J =.4EJ+_I_"1 || . Lil 'JI P13}f31=.|5 Section 3.3 2.8. J- a. E{X]-= Ex r mix) .I.=|::' =[fl}||:.[}3J+ {1][.|5}+ [2]{.45}+{3][.2fl +{4Hfl5j = 2.11“! J- I1. WK}: £{x-2flfif ~p{x} =m— :_flfif[_tam+__.+{4— 1&3me .1.=|!!| = .339133+.1fi354fl+_[fl1fiEfH.2335?2+_lflfilxfl = 93154 :3. 5154.936 235?? .|.'= I] .1 d. mm = x: - pm] — (215633 = 5_|3m— 4243:; = .9354 lfi. a. x flutmmes put} {1' FFFF { .7" ‘14 =24fl1 l FH—‘STIII-‘SIa'_F51a'I:.5L-'1=IJ 4|+_J:f':_3:|] =41 1:3 2 I"FS S,l"51"S.SF1"S.l-'S H FEES I‘.SSI"I" {1Hin .3 II: I =2fi4fi 3 F55; 5;. SIHSESFSSSSIJ 4| [.THJ r" | =.m‘5& 4 3355; 1.334 =mm I1. .IIL‘I 55::- 54 £5 .20 .EE- c. - CI E 2 3 4 III 5 area c. [)[M '15 largest I'm X = I d. Pix 2 2] ‘—- p£31+ pi?“ + pH) 3 .Efiifi-F.EJTI'Sfi+_[H}EI : "1433 This L'mlld 31er Inc dun: using 'th' untilplcmunl. Section 3.3 2.8. J- a. E{X]-= Ex r mix) .I.=|::' =[fl}||:.[}3J+ {1][.|5}+ [2]{.45}+{3][.2fl +{4Hfl5j = 2.11“! J- I1. WK}: £{x-2flfif ~p{x} =m— :_flfif[_tam+__.+{4— 1&3me .1.=|!!| = .339133+.1fi354fl+_[fl1fiEfH.2335?2+_lflfilxfl = 93154 :3. 5154.936 235?? .|.'= I] .1 d. mm = x: - pm] — (215633 = 5_|3m— 4243:; = .9354 ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern