Sloution to problem set 4

Probability and Statistics for Engineering and the Sciences (with CD-ROM and InfoTrac )

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: S|o4 EEEEEEEEEEEI 78. Haysth works) : Pt I - 2 works LJ 3 -- 4 works] 2 P11 1 w 2 works} + P{ 3 — 4 works} - P( I -— 2 workxfl 3 -— 4 works) 2 P(_l wurksu 2 works} + PC! works fl 4 works) — P( I — 2 ) 0 PIS — 4} =( .9+.9-.81] + (HHS) '- (.9+.9-.81)(.9)(.9} : .99 + .81 - .8019 2 99%| 83. a. Let D. : detection on ISI fixaliun. D3 : dctectinn on 2IHI fixation. P(dctecti0n in at most 2 fixations) : PILDIJ+ P'fo (“a D1) : 11ml ) + P(D2|DI')P(D1) =P+P£l "P}=P(2"P3- h. DBfiI‘IE 13., D3, .Dn as; in 3. Then P{:1t moat n fixatiuns} =P{Dl)+P(D.’ r‘“. D3} +P{Dl’ (‘1 D3’ n D3)+ ...+ P{D]’ n D1’ (1 (‘1 D....’ n DI.) =p+p{l --p]+pn[l--}:I)'+...+p(l--}:I)“'I 1—(1—p)” 1—(1- p) Altcrnalivcly. P(at must n fixaliuns) : l - P{e1t least n+l are req'd} =p[l+[l -p}+{| -p)1+...+(I—p)h'1]: p! =]_(1_p)fl = l — Pfim detection in l5l n l’ixations) = l — P(D.' flDl’ fl nDn’) I l _ U m P)” c. P{no detcction in 3 fixatilms} : {I — [1)] d. Ptpasses inspection] 2 PHnnt flawed} LJ {flawed and passesh : P{1wtf]awed}+ Pt'flawed and passes} = .9 + Ptpasses | flawed}l P(f1awed) : .9+(1 n pf“) . _ 3 e. PU'lawed Ipassed} = W = Firm-9d) .9 + .1(1— p)- 3 Fur p = .5. Ptflnwed I passed} : ' 1L5) = _0137 .9+.1(.5}3 When three experiments are performed. there are 3 different ways in which detectinn can occur on exactly 2 of the experiments: {i} #1 and #2 and not #3 {ii} #I and not #2 anti #3: (iii) nnt#l and #2 and #3. If the impurity is present, the probability of exactly 2 deteetinns in three (independent) experiments is (.3)(.8)[.2J + {.3]{.2](.3] + (.2}(.8){.8} = .384. If the impurity is absent. the analogous probability is 3(.l}(.l )(9) = .027. Thus Ptpresent I detected in exactly 2 out 01—3} 2 Pidet ecfed.in.exaefly.2 r“. present) P(det ected.in.exnctiy.2] (.384)(.4) : —= .905 (.334)(.4) + (.027)(.6} Ill-1. .15 .5 WHERE i .0525 R1~=CR3~=CR2 // .15 .25 G R3421 IDSFS f5 .El?5 El 1-:R2-cR3 .15 .525 .1 5 I I I 3. PH] I R. n: R: q RILI = — = .fi? . F{B | R. {R3 n: RI1]=.33. dummy ab granule. _ IS + .075 .UfiZS h. Pit] IR. (RI. c R1] : = .E‘MI c .flfi. 5L] cluxsit'y up. hasfll. .2 I25 JETS PM I R_. c R. < R1: = = .flfifi? . 5L1 clmi r3; in; basalt. .56125 c. Ptrrmllcum Elam-1isz P113 L'lamaii' i-J..‘i G: + P“: clzmsaif :15 B] : Piclafihifax U- f BJPfBj + Htlamii' 3:; E- | fill-7(5) ZHRIifliikaIBH.?35+P1R1{R;{R;UIR4; {R-I (R; IGJLESI = [.HHLTSI + [.25 + .lfiHlSII = .I?5 :1. Fur wins: values; of pwil] P16 |R.-=:R_.::R_1j::- .5. PH] ER. a: R_». : R112:- :1 P15!R_.~:R. q R1] :- j'.’ .51 .15 I Ham. {R3 cm]: —p=—P:-.5 ifl' p 2:— .fip+.l£1-pj .I+.5p T .25}: __ 4 BEER. {Rd {R3}: —::_5 .H p :— _25p+_2{1—p} 9 Jim _. I4 . . FIBER. {R.n:Rl1= — 3:- .5 M p }— 1muslm51nclwe] .l5p+.TII.'i-p,1 I? I4 II' p 3? E aha-aya- finally as granile. HIT. . I | a. Pliallmcurrfctrmm}: —=—=.fl*4|7" 4X3X2>¢l 24 h. The ‘i uulcumm which grit-id Luann-cut assignnwnh are; 2143. 234 t. 1-4 | 3. 3] 42, 3412. El 342L4l11432Land43|15u Frau incurred] : — 2.315 24 Section 3.2 l]. I1. [LS 0.4 I13 0.2 III Ill] 'I-I.I"\r'| -'|u'l -_1mr. a. L'. Pix =IEI‘J =.4EJ+_I_"1 || . Lil 'JI P13}f31=.|5 Section 3.3 2.8. J- a. E{X]-= Ex r mix) .I.=|::' =[fl}||:.[}3J+ {1][.|5}+ [2]{.45}+{3][.2fl +{4Hfl5j = 2.11“! J- I1. WK}: £{x-2flfif ~p{x} =m— :_flfif[_tam+__.+{4— 1&3me .1.=|!!| = .339133+.1fi354fl+_[fl1fiEfH.2335?2+_lflfilxfl = 93154 :3. 5154.936 235?? .|.'= I] .1 d. mm = x: - pm] — (215633 = 5_|3m— 4243:; = .9354 lfi. a. x flutmmes put} {1' FFFF { .7" ‘14 =24fl1 l FH—‘STIII-‘SIa'_F51a'I:.5L-'1=IJ 4|+_J:f':_3:|] =41 1:3 2 I"FS S,l"51"S.SF1"S.l-'S H FEES I‘.SSI"I" {1Hin .3 II: I =2fi4fi 3 F55; 5;. SIHSESFSSSSIJ 4| [.THJ r" | =.m‘5& 4 3355; 1.334 =mm I1. .IIL‘I 55::- 54 £5 .20 .EE- c. - CI E 2 3 4 III 5 area c. [)[M '15 largest I'm X = I d. Pix 2 2] ‘—- p£31+ pi?“ + pH) 3 .Efiifi-F.EJTI'Sfi+_[H}EI : "1433 This L'mlld 31er Inc dun: using 'th' untilplcmunl. Section 3.3 2.8. J- a. E{X]-= Ex r mix) .I.=|::' =[fl}||:.[}3J+ {1][.|5}+ [2]{.45}+{3][.2fl +{4Hfl5j = 2.11“! J- I1. WK}: £{x-2flfif ~p{x} =m— :_flfif[_tam+__.+{4— 1&3me .1.=|!!| = .339133+.1fi354fl+_[fl1fiEfH.2335?2+_lflfilxfl = 93154 :3. 5154.936 235?? .|.'= I] .1 d. mm = x: - pm] — (215633 = 5_|3m— 4243:; = .9354 ...
View Full Document

Ask a homework question - tutors are online