UltimateCalculusGuide

# UltimateCalculusGuide - T HE U LTIMATE C ALCULUS S TUDY G...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: T HE U LTIMATE C ALCULUS S TUDY G UIDE V 2 ROBERT SMITH FUNCTIONS LINEAR FUNCTIONS A function of the form ݕ ൌ ݉ݔ ൅ ܾ , with slope ݉ and ݕ ‐ intercept ܾ . POWER FUNCTIONS A function of the form ݕ ൌ ݇ݔ ௣ . POLYNOMIAL FUNCTIONS Any linear combination of power functions with integer powers ݌ ൒ 0 . A function of the form ݕ ൌ ∑ ܽ ௞ ݔ ௞ ௡ ௞ୀ଴ with coefficients ܽ ௞ . RATIONAL FUNCTIONS A function of the form ܴሺݔሻ ൌ ܲሺݔሻ/ܳሺݔሻ where ܲ and ܳ are polynomial functions. EXPONENTIAL FUNCTIONS A function of the form ݕ ൌ ܲ ଴ ܽ ௫ or ݕ ൌ ܲ ଴ ݁ ௞௧ . ܲ ଴ is the starting value to an exponential growth or decay model. LOGARITHMIC FUNCTIONS A function of the form ݕ ൌ log ௕ ݔ with logarithmic base ܾ . The equation has the equivalent representation ܾ ௬ ൌ ݔ . ( ln ݔ ൌ log ௘ ݔ ) Logarithm Properties log ௕ ݔ ൌ ln ݔ ln ܾ log ௕ ݉݊ ൌ log ௕ ݉ ൅ log ௕ ݊ log ௕ ݉ ݊ ൌ log ௕ ݉ െ log ௕ ݊ log ௕ ݔ ௣ ൌ ݌ log ௕ ݔ TRIGONOMETRIC FUNCTIONS If we have a unit circle, any point on the circle is defined by the coordinates ሺcos ݔ , sin ݔሻ . We have the following: sin ݔ csc ݔ ൌ 1 sin ݔ cos ݔ sec ݔ ൌ 1 cos ݔ tan ݔ ൌ sin ݔ cos ݔ cot ݔ ൌ cos ݔ sin ݔ INVERSE TRIGONOMETRIC FUNCTIONS Function Inverse sin ݔ sin ିଵ ݔ ൌ arcsin ݔ cos ݔ cos ିଵ ݔ ൌ arccos ݔ tan ݔ tan ିଵ ݔ ൌ arctan ݔ Common Trigonometric Identities sin ଶ ݔ ൅ cos ଶ ݔ ൌ 1 sinሺ2ݔሻ ൌ 2 sin ݔ cos ݔ cosሺ2ݔሻ ൌ cos ଶ ݔ െ sin ଶ ݔ ൌ 2 cos ଶ ݔ െ 1 ൌ 1 െ 2 sin ଶ ݔ cosሺܽ േ ܾሻ ൌ cos ܽ cos ܾ ט sin ܽ sin ܾ sinሺܽ േ ܾሻ ൌ sin ܽ cos ܾ േ cos ܽ sin ܾ HYPERBOLIC FUNCTIONS cosh ݔ ൌ 1 2 ሺ݁ ௫ ൅ ݁ ି௫ ሻ sinh ݔ ൌ 1 2 ሺ݁ ௫ െ ݁ ି௫ ሻ SYMMETRY A function is odd if ݂ሺെݔሻ ൌ െ݂ሺݔሻ holds true. This is a 180 degree rotation about the origin. A function is even if ݂ሺെݔሻ ൌ ݂ሺݔሻ holds true. This is a reflection about the ݕ ‐ axis. LIMITS IDEA OF A LIMIT There is a number ܮ such that as ݔ approaches some number ܿ , ݂ሺݔሻ approaches that ܮ . Mathematically, lim ௫՜௖ ݂ሺݔሻ ൌ ܮ . FORMAL DEFINITION OF A LIMIT If there is a number ܮ such that for any ߳ ൐ 0 , there exists a ߜ ൐ 0 such that if |ݔ െ ܿ| ൏ ߜ , and ݔ ് ܿ , then |݂ሺݔሻ െ ܮ| ൏ ߳ , then lim ௫՜௖ ݂ሺݔሻ ൌ ܮ . LIMIT PROPERTIES Let ݂ and ݃ be functions of ݔ and let ݇ and ܿ be a constant. lim ௫՜௖ ݂݇ ൌ ݇ lim ௫՜௖ ݂ lim ௫՜௖ ሺ݂ േ ݃ሻ ൌ lim ௫՜௖ ݂ േ lim ௫՜௖ ݃ lim ௫՜௖ ݂݃ ൌ ቀlim ௫՜௖ ݂ቁ ቀlim ௫՜௖ ݃ቁ lim ௫՜௖ ݂ ݃ ൌ lim ௫՜௖ ݂ lim ௫՜௖ ݃ lim ௫՜௖ ݇ ൌ ݇ lim ௫՜௖ ݔ ൌ ܿ For indeterminate forms 0/0 or ∞/∞ , we may use L’Hôpital’s rule....
View Full Document

## This note was uploaded on 04/02/2008 for the course 640 162 taught by Professor Scheffer during the Spring '08 term at Rutgers.

### Page1 / 2

UltimateCalculusGuide - T HE U LTIMATE C ALCULUS S TUDY G...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online