{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Test1-S08-Solutions

# Test1-S08-Solutions - ACTSC 431 Loss Models 1 TEST#1 1(13...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ACTSC 431 - Loss Models 1 TEST #1 1. (13 marks) The loss random variable X has pdf f X ( x ) = 1 4 (3 + x ) e & x ; x > . (a) (2 marks) Determine the cumulative distribution function F X ( x ) . F X ( x ) = Z x 1 4 (3 + y ) e & y dy = 1 4 & & (3 + y ) e & y ¡ ¡ x + Z x e & y dy ¢ = 1 4 £ 3 & (3 + x ) e & x + ¤ 1 & e & x ¥¦ = 1 4 £ 4 & (4 + x ) e & x ¦ = 1 & 4 + x 4 e & x . (b) (1 mark) Determine the hazard rate h X ( x ) . h X ( x ) = f X ( x ) 1 & F X ( x ) = 3+ x 4 e & x 4+ x 4 e & x = 3 + x 4 + x = 1 & 1 4 + x . (c) (2 mark) Is the random variable X DFR, IFR or neither? Justify your answer. h X ( x ) is a non-decreasing function of x ) X is IFR 1 (d) (2 marks) Determine the mean excess loss e X ( x ) = E [ X & x j X > x ] . e X ( x ) = E [ X & x j X > x ] = Z 1 x ( y & x ) f X ( y ) F X ( x ) dy = Z 1 x ( y & x ) 3+ y 4 e & y 4+ x 4 e & x dy = Z 1 x ( y & x ) (3 + y ) e & y (4 + x ) e & x dy = 1 (4 + x ) e & x Z 1 x ( y & x ) (3 + y ) e & y dy = 1 (4 + x ) e & x Z 1 x ( y & x ) (3 +...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

Test1-S08-Solutions - ACTSC 431 Loss Models 1 TEST#1 1(13...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online