{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 15 - Kapoor(mk9499 oldhomework 15 Turner(60230 This...

This preview shows pages 1–4. Sign up to view the full content.

Kapoor (mk9499) – oldhomework 15 – Turner – (60230) 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points 4 . 7 Ω 3 . 7 Ω 16 . 8 Ω 26 . 8 V 13 . 4 V Find the current through the 16 . 8 Ω lower- right resistor. Correct answer: 1 . 0229 A. Explanation: r 1 r 2 R E 1 E 2 A D E B C F i 1 i 2 I Let : E 1 = 26 . 8 V , E 2 = 13 . 4 V , r 1 = 4 . 7 Ω , r 2 = 3 . 7 Ω , and R = 16 . 8 Ω . From the junction rule, I = i 1 + i 2 . Applying Kirchhoff’s loop rule, we obtain two equations: E 1 = i 1 r 1 + I R (1) E 2 = i 2 r 2 + I R = ( I - i 1 ) r 2 + I R = - i 1 r 2 + I ( R + r 2 ) , (2) Multiplying Eq. (1) by r 2 , Eq. (2) by r 1 , E 1 r 2 = i 1 r 1 r 2 + r 2 I R E 2 r 1 = - i 1 r 1 r 2 + I r 1 ( R + r 2 ) Adding, E 1 r 2 + E 2 r 1 = I [ r 2 R + r 1 ( R + r 2 )] I = E 1 r 2 + E 2 r 1 r 2 R + r 1 ( R + r 2 ) = (26 . 8 V) (3 . 7 Ω) + (13 . 4 V) (4 . 7 Ω) (3 . 7 Ω) (16 . 8 Ω) + (4 . 7 Ω) (16 . 8 Ω + 3 . 7 Ω) = 1 . 0229 A . 002 (part 1 of 3) 10.0 points Consider the circuit in the figure. 15 . 0 V 3 . 3 Ω 3 . 3 Ω 7 . 3 Ω 7 . 3 Ω 4 . 5 Ω 15 . 0 Ω 1 . 9 Ω Find the current in the 1.9 Ω resistor. Correct answer: 1 . 33841 A. Explanation: E R 1 R 2 R 3 R 4 R 5 R 6 R 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Kapoor (mk9499) – oldhomework 15 – Turner – (60230) 2 Let : R 1 = 3 . 3 Ω , R 2 = 3 . 3 Ω , R 3 = 7 . 3 Ω , R 4 = 7 . 3 Ω , R 5 = 4 . 5 Ω , R 6 = 15 . 0 Ω , R 7 = 1 . 9 Ω and Δ V = 15 . 0 V . R 3 and R 4 are in parallel: 1 R 34 = 1 R 3 + 1 R 4 R 34 = parenleftbigg 1 R 3 + 1 R 4 parenrightbigg - 1 = parenleftbigg 1 7 . 3 Ω + 1 7 . 3 Ω parenrightbigg - 1 = 3 . 65 Ω R 2 and R 34 are in series: R 234 = R 2 + R 34 = 3 . 3 Ω + 3 . 65 Ω = 6 . 95 Ω R 5 and R 6 are in parallel: 1 R 56 = 1 R 5 + 1 R 6 R 56 = parenleftbigg 1 R 5 + 1 R 6 parenrightbigg - 1 = parenleftbigg 1 4 . 5 Ω + 1 15 Ω parenrightbigg - 1 = 3 . 46154 Ω R 56 and R 7 are in series: R 567 = R 56 + R 7 = 3 . 46154 Ω + 1 . 9 Ω = 5 . 36154 Ω R 234 and R 567 are in parallel: 1 R 234567 = 1 R 234 + 1 R 567 R 234567 = parenleftbigg 1 R 234 + 1 R 567 parenrightbigg - 1 = parenleftbigg 1 6 . 95 Ω + 1 5 . 36154 Ω parenrightbigg - 1 = 3 . 02665 Ω R 1 and R 234567 are in series: R eq = R 1 + R 234567 = 3 . 3 Ω + 3 . 02665 Ω = 6 . 32665 Ω The current in the circuit is I = Δ V R eq = 15 V 6 . 32665 Ω = 2 . 37092 A Δ V 234567 = I R 234567 = (2 . 37092 A) (3 . 02665 Ω) = 7 . 17595 V Here the current is I 7 = I 567 = Δ V 234567 R 567 = (7 . 17595 V) (5 . 36154 Ω) = 1 . 33841 A . 003 (part 2 of 3) 10.0 points Find the potential difference across the 1.9 Ω resistor. Correct answer: 2 . 54298 V. Explanation: Solution: Δ V 7 = I 7 R 7 = (1 . 33841 A) (1 . 9 Ω) = 2 . 54298 V . 004 (part 3 of 3) 10.0 points Find the current in the 15.0 Ω resistor. Correct answer: 0 . 308864 A. Explanation: Solution: I 6 = Δ V 6 R 6 = (4 . 63297 V) (15 Ω) = 0 . 308864 A . 005 10.0 points What is the emf E of the battery at the lower left in the figure?
Kapoor (mk9499) – oldhomework 15 – Turner – (60230) 3 1 . 58 Ω 18 Ω 1 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 7

15 - Kapoor(mk9499 oldhomework 15 Turner(60230 This...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online