# Primera Calificada de Procesos - Quispe Cama Christian...

This preview shows pages 1–3. Sign up to view the full content.

Quispe Cama Christian Robert e2 ! Yangali PRIMERA PC DE PROCESOS ESTOCASTICOS 1.  Tenemos: a)  Sean  . Calcular:  Dado   el   teorema,   en   nuestro   ejercicio,   vemos   que:       y  Hallamos la matriz  . Como   es invertible, usamos el segundo caso. Teorema.-  Sea (M, N) dos variables aleatorias gaussianas. Entonces:     sea     conjuntamente  gaussianas. Si   es invertible, entonces: Si   no es invertible, entonces:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Quispe Cama Christian Robert e2 ! Yangali b)  Asuma que  . Calcular:   Usamos el primer caso del teorema dado las condiciones de nuestro problema, asi  tendremos:      y    . Por la propiedad reproductiva de la Normal, la  suma   y   la   resta   de   dos   Variables   Normales   resultan   ser   Normales   ambas   e  independientes. Si son independientes, entonces   , por lo tanto: Hallemos su media y variancia de la variable “m”.
This is the end of the preview. Sign up to access the rest of the document.
• Spring '09
• CiriloAlvarez

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern