EGG 307 HW 2

# EGG 307 HW 2 - 2 Using the formula with modified values of...

This preview shows pages 1–2. Sign up to view the full content.

EGG 307: Engineering Economics Spring 2009 Homework No. 2: Due Wednesday 1/28/09 Problems : 2-14; 2-16. Problems : 4-8, 4-10; 4-15, 4-18, 4-19. Notes: (1) For Problem 2-14 , answer the following additional questions: (c) What is the maximum amount of wood products can the company produce and sell without loosing money? (d) Repeat part (a) of the problem, but assume that 10% of the wood products produced are defective and cannot be sold. Hint: You have to modify your revenue function. (2) Hint for Problem 2-16 , develop a profit function and use calculus to determine the value of X that will maximize the profit. (3) For Problems 4-15 and 4-19 , use both the exact formula and the “Rule of 72” and then compare the results. Solutions: (c) This corresponds to the upper limit breakeven point, which is 6,672 units/month (See (b) above). (d) If D units are produced, only 0.9D can be sold, therefore Price, P = 600 – 0.05(0.9D), and Total revenue, TR = [600 – 0.05(0.9D)]x[0.9D] = 540D – 0.0405D

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 Using the formula with modified values of a and b , The optimal quantity to be produced, D = (540 – 131.50)/(2x0.0405) = 5,043 units/month Quantity to be sold = 0.9D = 4,539 units/month Price, P = 600 – 0.05x4,539 = \$373.06 Total profit = total revenue – total cost = \$373.06x4,539 – (900,000 + 131.50x5,043) = \$130,076. EGG 307: Engineering Economics Spring 2009 | By using the rule of 72: | No. of years = 72/i% = 72/10 = 7.2 years. | - very close to the exact calculation 4-19 If cash flow doubles every 4 years, then using the rule of 72 , the principle will grow N times over 36 years, where N = 2 (No. of 4-year periods) = 2 9 = 512, Therefore, F = \$1,000 x 512 = \$512,000 Net gain = 512,000 – 1,000 = 511,000 By exact calculations : 2P = P(F/P, i , 4) Î 2 = (1+ i ) 4 Î i = 2 1/4 – 1 = 18.92% Therefore, F = P(F/P, 18.92%, 36) = \$512,000 Net gain = 512,000 – 1,000 = 511,000...
View Full Document

## This note was uploaded on 07/13/2009 for the course EGG a taught by Professor Dr.kaseko during the Spring '09 term at University of Nevada, Las Vegas.

### Page1 / 2

EGG 307 HW 2 - 2 Using the formula with modified values of...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online