Exam2003Solutions

# Exam2003Solutions - 1 MATH 3705 Final Examination Solutions...

This preview shows pages 1–4. Sign up to view the full content.

1 MATH 3705 Final Examination Solutions April 2003 1. Lf t 3 e 2 t g =(d) (a) 6 ( s +2) 3 (b) 6 e ¡ 2 s s 3 (c) 6 ( s ¡ 2) 3 (d) 6 ( s ¡ 2) 4 (e) None of the above. 2. Lf e ¡ 3 t cos(4 t ) g =(b) (a) s ( s +3) 2 +16 (b) s +3 ( s +3) 2 +16 (c) e ¡ 3 s s 2 +16 (d) se ¡ 3 s s 2 +16 (e) None of the above. 3. L ¡ 1 ½ e ¡ 3 s s 2 ¡ 2 s +5 ¾ =(a) (a) 1 2 u ( t ¡ 3) e t ¡ 3 sin(2 t ¡ 6) (b) 1 2 u ( t ¡ 3) e t sin(2 t ¡ 6) (c) 1 2 u ( t ¡ 3) e t sin(2 t ) (d) 1 2 u ( t ¡ 3) e ¡ 3 t sin(2 t ) (e) None of the above. 4. L ¡ 1 ½ 3 s ( s 2 +9) 2 ¾ =(c)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 (a) t sin(3 t ) (b) ¡ t sin(3 t ) (c) 1 2 t sin(3 t ) (d) ¡ 1 2 t sin(3 t ) (e) None of the above. 5. The general solution of 4 x 2 y 00 ¡ 8 xy 0 +9 y = 0, valid for x 6 =0,isgivenby(d) (a) c 1 j x j 3 = 2 + c 2 j x j 3 = 2 (b) j x j " c 1 cos Ã p 5 2 ln j x j ! + c 2 sin Ã p 5 2 ln j x j !# (c) c 1 j x j + c 2 j x j p 5 = 2 (d) c 1 j x j 3 = 2 + c 2 j x j 3 = 2 ln j x j (e) None of the above. 6. The general solution of x 2 y 00 + xy 0 +(5 x 2 ¡ 9) y =0near x 0 = 0, valid for x> 0, is given by (b) (a) c 1 J 3 ( p 5 x )+ c 2 J ¡ 3 ( p 5 x ) (b) c 1 J 3 ( p 5 x )+ c 2 Y 3 ( p 5 x ) (c) c 1 J p 5 (3 x )+ c 2 J ¡ p 5 (3 x ) (d) c 1 J p 5 (3 x )+ c 2 Y p 5 (3 x ) (e) None of the above. 7. At x = 999, the Fourier sine series of f ( x )= x on [0 ; 1] converges to (c) (a) 1 (b) ¡ 1 (c) 0 (d) 1 2 (e) None of the above.
3 8. The di®erential equation 4 x 2 y 00 ¡ 8 xy 0 +9 ¸y = 0, when placed in the Sturm-Liouville form ( py 0 ) 0 ¡ qy + ¸ry = 0, has the weight function r ( x )g ivenby(d) (a) 9 x 2 4 (b) ¡ 9 x 2 4 (c) 9 x 4 (d) 9 4 x 4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 07/16/2009 for the course MATH 3705 taught by Professor Jaberabdualrahman during the Winter '08 term at Carleton CA.

### Page1 / 6

Exam2003Solutions - 1 MATH 3705 Final Examination Solutions...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online