hw 7 - - "Hqu '7 Melvin!) ENGINEERING MECHANICS -...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: - "Hqu '7 Melvin!) ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-83 The plate shown in Fig. P6-83 is supported in a horizontal position by two hinges and a cable. The hinges have been properly aligned; therefore, they exert only force reactions on the plate. Assume that the hinge at B resists any force along the axis of the hinge pins. Determine the reactions at supports A and B and the tension in the cable. SOLUTION From a free-body diagram for the plate: moment equilibrium: x F) (20 i) x (ij + A22) + (—5 i + 20 3) x (—0.3660TCD 3 + 0.5000TCDE) (10 i + 10 j) x (—100 E) + (25 i + 20 3) x (-300 E) = (F n W) + (F A/B x x) + (PC/B x Tcn) + (F G/B E/B (101*CD - 7000) i + (2.500TCD - 20Az + 3500) j + (4.330'rCD + 20A ) E = O Y From which: 3 4L = 700 lb TCD = —606.2‘2 + 350.0 j/lb 512.5 lb 8 513 lb E -606 i + 350 3 lb -151.55 1b a —151.6 lb 3 = -151.6 3 + 513 E lb force equilibrium: 2F = K + B + TCD - W — P = Ay j + A2 2 + Ex 5 + By 3 + 132 E - 606.2 3 + 350.0 E — 100 E — 300 E = B i + (-151.55 + By - 606.2) 3 + (512.5 + 32 — 50) E = o X which: B By = 757.75 5 758 lb X B = -462.5 s -463 1b 3 = 758 “ - 463 R 1b Ans. Z ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-87* The plate shown in Fig. P6-87 weighs 150 lb and is supported in a Janina—1L horizontal position by two hinges and a cable. The hinges have been properly aligned; therefore, they exert only force reactions on the plate. Assume that the hinge at B resists any force along the axis of the hinge pins. Determine the reactions at supports A and B and the tension in the cable. SOLUTION T a = T 20 1 - 22 J + 18 E I CD/C c 2 . Z Z {(20) + (-22) + (18) V = 0.5754TC 1 - 0.6330TC J + 0.5179TC 2 From a free-body diagram for the plate: For moment equilibrium: (PC/B x Tc) + (FA/B x K) + (FGIB x W) A [(8 i + 22 j) x (0.5754TC i - 0.6330TC J + 0.51791C 2)] A [(24 i) x (Ay J + Az E)] + [(12 i + 11 j) x (—150 2)] (11.3938TC - 1650) i + (-4.1432TC - 24Az + 1800) j + (-17.7228TC + 24Ay) E = 6 ~ (aiming—r. 1m 'thMwJu-mgmnu ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-87 (Continued) Solving yields: = 144.82 lb a 144.8 lb Tc ' TC = 144.32(0.5754 i - 0.6330 3 + 0.5179 E) = 33.33 i — 91.67 3 + 75.00 E lb = 106.98 lb = 50.00 lb K = 106.93 3 + 50.00 E 1b 2 107.0 3 + 50.0 E lb A = /(106.93)2 + (50.00)2 = 113.09 lb a 113.1 lb For force equilibrium: 2? = K + B + Tc + W = 106.93 3 + 50.00 E + 3x 1 + 3y 3 + 32 E + 33.33 i - 91.67 3 + 75.00 E — 150 E = (3x + 33.33) i + (By + 106.93 - 91.67) 3 + (32 + 50.00 + 75.00 - 150.00) E = U + B j + 3 E y 2 = -33.33 i — 15.31 3 + 25.00 E lb A a —33.3 i - 15.31 J + 25.0 E lb 3 = /(-33.33)2 + (-15.31)2 + (25.00)2 = 33.34 lb a 33.3 lb ENGINEERING MECHANICS - STATICS, 2nd. Ed. 6—89 A beam is supported by a ball-and-socket joint and two cables as shown in Fig. P6-89. reaction at support A (the Determine the ball-and—socket joint) and the tensions in the two cables. SOLUTION B I 0 i - 11 ‘ + 6 E T “i—J—J / 02 + (-11)2 + (6)2 -0.8779TB j + 0.4789TB E [ —7 i - 11 i + 3 E J _TC /(-7)2 + (-11)2 + (3)2 = 052321c 1 - 0.8222TC J + 0.22421C E From a free-body diagram for the bar: For moment equilibrium: (FD/A x TB) + (F [(11 3) x (—0.37791 D/A B x TC) + (F D/A x P1) + (F j + 0.47391B E)] [(11 3) x (-0.5232Tc i - 0.8222Tc j + 0.2242Tc [(11 3) x (300 3)] + [(6 3) (5.2679TB + 2.4662TC - 4300) i + (5.75521C - 3300) E = 0 x (-300 E)] 484 E'IA W. F. RILEY AND L. D. x P ) E)] STURGES -Aﬂmm...m‘ no.an M . .,~.‘_1.‘_v.\..1-nmw,i.‘;.. ..- hum-wwwwunm, : 1 ENGINEERING MECHANICS — STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-89 (Continued) Solving yields: TB = 642.7 lb 3 643 lb TC = 573.4 lb a 573 lb Ta = 642.7(-0.8779 j + 0.4789 2) = —564.2 3 + 307.8 2 lb TC = 573.4(-0.5232 i — 0.8222 3 + 0.2242 R) = -300.0 E — 471.4 3 + 128.6 E lb For force equilibrium: 1 .,.......1-w...¢._.-..._._._- A“... _..._-_._..‘ WMEJMAW.“ )ZF'=1!A+TB+TC+151+152 (RA - 300.0 + 300.0) T X AV - 564.2 - 471.4) J (R + 307.8 + 128.6 - 800) E = 0 A2 A Ay‘] 1035.6 3 + 363.6 R 1b +RAZE A z 1036 J + 364 2 lb RA = /(1035.6)2 + (363.6)2 = 1097.6 lb a 1098 lb WWGA»‘mem.nwmm.m.u.m_¢n. Nah“- ..NA 1. ...1.._._._._. -3...“ 3.... ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6—90 The plate shown in Fig. P6—90 has a mass of 75 kg. The brackets at supports A and B exert only force reactions on. the plate. Each of the brackets can resist a force along the axis of pins in one direction only. Determine the reactions at supports A and B and the tension in the cable. SOLUTION T = T a = T -1.00 i - 1.40 cos 30° 3 + g1.2o + 1.40 sin 30°) E C C D/C C 2 2 2 /(—1.00) + (-1.40.cos 30°) + (1.20 + 1.40 sin 30°) = -o.4056Tc i - 0.4917Tc 3 + 0.7706TC E W = n5 = 75(9.81)(—E) = -735.75 E N 2 —735.8 E N I From a free-body diagram ' for the plate: For moment equilibrium: (re/B x TC) + (r A/B x A) + (I‘G/B x W) [(1 i + 1.2 E) x (—0.4056TC i - 0.4917Tc j + 0.7706TC 2)] [(2 i) x (AV 3 + A2 2)] [(1 i + 0.70 cos 30° 3 - 0.70 sin 30° E) x (-735.3 2)] (0.5900TC - 446.0) 3 + (-1.2573TC - 2Az + 735.8) 3 + (—0.4917TC + 2A ) E = 6 Y 486 n «wﬂamwm‘ s. an.) Mei tan...“ in“ n H ~1‘a_¢>~u—H<v;p ( 1 i i i ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-90 (Continued) Solving yields: = 755.9 N 5 756 N Tc Tc = 755.9(-0.4056 T - 0.4917 3 + 0.7706 R) = -306.6 f — 371.7 3 + 582.5 E N 185.84 N = -107.30 N A K = 185.84 3 - 107.30 E N a 185.8 J - 107.3 E N A = {(185.84)2 + (“107.30)2 = 214.59 N 3 215 N For force equilibrium: 2? = K +-§ + TC + W = 185.84 3 — 107.30 E + Bx i + By 3 + Bz E - 306.6 f - 371.7 3 + 582.5 E - 735.8 E = (Bx - 306.6) E + (By + 185.84 — 371.7) 3 + (32 - 107.30 + 582.5 — 735.8) E = 6 y j + Bz E + 185.86 3 + 260.6 E N a 307 i + 185.9 3 + 261 E N B = /(306.6)? + (185.86)2 + (260.6)2 = 443.2 N z 443 N ...
View Full Document

This note was uploaded on 07/16/2009 for the course MEEN 221 taught by Professor Mcvay during the Spring '08 term at Texas A&M.

Page1 / 7

hw 7 - - "Hqu '7 Melvin!) ENGINEERING MECHANICS -...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online