{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

matlab_control

# matlab_control - Using MATLAB for Control Analysis...

This preview shows pages 1–5. Sign up to view the full content.

Using MATLAB for Control Analysis Polynomials 3 2 2 1 2 3 4 2 4 = + + = + + Given plynomials p s s s p s s >> p1=[1 2 -3 4];p2=[3 1 4]; Multiplication >> p=conv(p1,p2) p = 3 7 -3 17 -8 16 Roots of polynomial >> roots(p) ans = -3.2843 -0.1667 + 1.1426i -0.1667 - 1.1426i 0.6421 + 0.8975i 0.6421 - 0.8975i Transfer function representation >> n=10*[3 0];p=[4 7 8 9 0 1]; >> H2=tf(n,p) Transfer function: 30 s --------------------------------- 4 s^5 + 7 s^4 + 8 s^3 + 9 s^2 + 1 >> s=tf('s');G2=20*(s+1)/(s^5+3*s^4+2*s^3+s-1) Transfer function: 20 s + 20 --------------------------- s^5 + 3 s^4 + 2 s^3 + s - 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Pole-zero representation of transfer functions >> Z=[0 -1];P=[-2 -4 -7];K=125; >> H1=zpk(Z,P,K) Zero/pole/gain: 125 s (s+1) ----------------- (s+2) (s+4) (s+7) >> s=zpk('s'); G1=150*(s+2)/((s+6)*(s+9)) Zero/pole/gain: 150 (s+2) ----------- (s+6) (s+9) Obtaining data from transfer function >> [nH1,pH1]=tfdata(H1,'v') nH1 = 0 125 125 0 pH1 = 1 13 50 56 >> [zH2,pH2]=zpkdata(H2,'v') zH2 = 0 pH2 = -1.4787 -0.1866 + 1.2212i -0.1866 - 1.2212i 0.0510 + 0.3289i 0.0510 - 0.3289
Pole/zero map >> pzmap(G2) -2 -1.5 -1 -0.5 0 0.5 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 System: G2 Pole : -1.78 + 0.454i Damping: 0.969 Overshoot (%): 0.0005 Frequency (rad/sec): 1.84 System: G2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

matlab_control - Using MATLAB for Control Analysis...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online