Final Solution 2008 new

# Final Solution 2008 new - Detection& Estimation Spring...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Detection & Estimation Spring, 2008 Final Exam Solution 1. (a) MVU = x[n](-1) n =0 N -1 n , N N -1 n =0 2 variance = 2 N n (b) ML estimate = x[n](-1) N N -1 n =0 (c) ^ A= N 1 + 2 2 A 2 2 x[n](-1) N -1 n=0 n (d) MMSE = N 1 + 2 2 A 2 2 x[n](-1) n , Bmse = 1 N 2 1 + 2 2 A 2. (a) x[n]e -n n =0 N -1 , x[n]e n =0 N -1 - 2 n N -1 - 2 n e n=0 2 (b) I ( ) = N -1 - 3 n e n =0 2 n =0 2 N -1 e - 4 n n =0 2 e N -1 - 3 n ^ (c) Var ( A) 2 e - 4 n N -1 n=0 e - 2 n e - 4 n - ( e - 3 n ) 2 n=0 n=0 n=0 N -1 N -1 N -1 n=0 n=0 n=0 N -1 N -1 N -1 - 2 n - 4 n - 3 n 2 n=0 n=0 N -1 N -1 N -1 ^ , Var ( B) 2 e - 2 n N -1 n=0 e - 2 n e - 4 n - ( e - 3 n ) 2 n=0 n=0 n=0 N -1 N -1 N -1 ^ (d) A = e- 4n x[n]e- n - e-3n x[n]e- 2n n=0 N -1 e e N -1 n=0 N -1 - ( e n=0 N -1 ) ^ B= - e - 3n x[n]e - n + e - 2 n x[n]e - 2 n N -1 e e n=0 n=0 n=0 n=0 n=0 N -1 N -1 N -1 - 2 n - 4 n - 3 n 2 - ( e n=0 ) 3. (a) L(x[0]) 0.5exp{x[0]} 1/ 3/ x[0] (b) The NP test decides H1 if ln(0.2 + e -3 ) 3 - < x[0] < PD = (c) PD 1 1.5+0.5 ln(PFA+e-3) 3 1 + ln(0.2 + e -3 ) 2 2 e-1-e-3 1 PFA (d) We decide H1 if ln 4 3 < x[0] < We decide H0 otherwise. 4. (a) NP detector N -1 - n x[ n]e 0 n =N -1 > r ' for A > 0 - 2 n e n =0 , N -1 - n x[n]e n =0 N -1 - 2 n < r" for A < 0 e n=0 (b) UMP test Decide H1 if x[n]e n =0 N -1 n =0 N -1 - n e - 2 n >r (c) From midterm, we know that ^ A= x[n]e n =0 N -1 n =0 N -1 - n e ( - 2 n 1 2 ( 2 ) e N - n =0 ^ ( x [ n ] - Ae - n ) 2 2 2 N -1 N -1 LG ( x ) = 1 2 2 N -1 n =0 )N e - n =0 2 2 x2 [n] ln( LG ( x )) = e - 2 n 2 2 0 ( n =N -1 n =0 x[n]e e - 2 n N -1 - n )2 We decide H 1 if x[n]e n =0 N -1 - n > r ' or x[n]e n =0 N -1 n =0 N -1 - n e - 2 n > r" (d) ^ A= x[n]e n =0 N -1 n =0 N -1 - n e - 2 n ^2 0 = ^ 12 = 1 N 1 N x [ n] 2 n =0 N -1 ^ ( x[n] - Ae ) n =0 N -1 - n 2 ^ ^ ^2 p ( x; A, 12 , H1 ) 0 N LG ( x ) = =( 2)2 ^2 ^ p ( x ; 0 , H 0 ) 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online