{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

hw2_sol

# hw2_sol - IEOR 165 Engineering Statistics Quality Control...

This preview shows pages 1–2. Sign up to view the full content.

IEOR 165: Engineering Statistics, Quality Control and Forecasting, Summer 2009 Homework 2 Solution Extra Question (1) The first sample moment is μ = n i =1 X i n . Looking at the expected value of the first moment for a single uniform random variable, E [ X ] = a 2 a = 2 · E [ X ] . Therefore A MOM = 2 μ = 2 n i =1 X i n . (2) E [ A MOM ] = 2 n n X i =1 E [ X i ] = 2 n n · a 2 = a V ar ( A MOM ) = 4 n 2 n X i =1 V ar ( X i ) = 4 n n 2 · a 2 12 = a 2 3 n . The estimator is unbiased. (3) Noting that the density of X i is f X i ( x ) = 1 | a | I { a < x < 0 } : a MLE = argmax a f ( x 1 , . . . , x n | a ) = argmax a n Y i =1 f X i ( x i | a ) = argmax 1 | a | ! n n Y i =1 I { a < x i < 0 } = argmax I { a < min { x 1 , . . . , x n }} | a | n = min { x 1 , . . . . x n } Thus, A MLE = min { X 1 , . . . . X n } . (4) P (min { X 1 , . . . , X n } ≤ u ) = 1 - P (min { X 1 , . . . , X n } > u ) = 1 - n Y i =1 P ( X i > u ) = 1 - u a n f min { X 1 ,...,X n } ( u ) = - nu n - 1 a n E [ A MLE ] = - n Z 0 a u u n - 1 a n du = - n n n +1 ( n + 1) a n ! 0 u = a = n n + 1 a E [ A 2 MLE ] = - n Z 0 a u 2 u n - 1 a n du = n n + 2 a 2 V ar ( A MLE ) = n n + 2 a 2 - n n + 1 a 2 = n ( n + 2)( n + 1) 2 a 2 This estimator is biased. The unbiased alternative is: n +1 n A MLE (5) We use the mean square error MSE ( ˆ θ ) = E ( ˆ θ - θ ) 2 = V ar

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}