solution17_0 - 20440 17 " 1 - , .- : - S A | Bb |...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 20440 17 " 1 - , .- : - S A | Bb | b | C : , B- S, A A aAb | ab | B C cD | aDb B bBa | ba | abD E aC | aD : A * B - S * A|B|C - - : S Bb | b A aAb | ab B bBa | ba | abD C cD | aDb E aC | aD S aAb | ab S bBa | ba | abD S cD | aDb A bBa | ba | abD E- C, D - : S Bb | b | aAb | ab | bBa | ba : V = {S , A, B} A aAb | ab | bBa | ba B bBa | ba S aAb | ab S bBa | ba . 2 : `S , C- S, A, B S' S | A aA | a | B B bBa | ba C aCb | ab D bDaaab S ABA | AB | BA | AA | A | B | CD | D : A * B - S * A| B| D - - : 1 S' S | S ABA | AB | BA | AA | CD | aA | a | bBa | ba | bDaaab A aA | a | bBa | ba B bBa | ba C aCb | ab D bDaaab D - : : V = {S `, S , A, B, C} S' S | S ABA | AB | BA | AA | aA | a | bBa | ba A aA | a | bBa | ba B bBa | ba C aCb | ab : V = {S `, S , A, B} C S' S | S ABA | AB | BA | AA | aA | a | bBa | ba A aA | a | bBa | ba B bBa | ba Sa a Sb b S' S | B S b BS a | S b S a Sa a Sb b S' S | Y1 BA A S a A | a | S bY3 | S b S a B S b Y2 | S b S a 3 : S ABA | AB | BA | AA | S a A | a | S b BS a | S b S a A S a A | a | S b BS a | S b S a : S AY1 | AB | BA | AA | S a A | a | S bY2 | S b S a Y2 BS a Y3 BS a ,M - , M = ({q 0 , q1 , q 2 , q3 , q 4 , p1 , p 2 , p3 , f }, {0,1,2}, {- |, X ,0,1}, , q 0 ,- |, { f }) : " L (q 0 ,2,- |) = {(q1 ,- |), ( p1 ,- |)} ( p1 ,0,- |) = {( p1 , X - |)} ( p1 ,1,- |) = {( p1 , X - |)} ( p1 ,2,- |) = {( p 2 ,- |)} - q1 ; - p1 ( p1 ,0, X ) = {( p1 , XX )} ( p1 ,1, X ) = {( p1 , XX )} ( p1 ,2, X ) = {( p 2 , X )} 2 ( p 2 ,0, X ) = ( p 2 ,1, X ) = {( p 2 , )} ( p 2 ,2, X ) = {( f , X )} ( p 2 ,0,- |) = ( p 2 ,1,- |) = {( p3 ,- |)} ( p 3 ,0,- |) = ( p3 ,1,- |) = {( p3 ,- |)} ( p 3 ,2,- |) = {( f ,- |)} (q1 ,0,- |) = {( q1 ,- |), (q 2 ,0- |)} (q1 ,1,- |) = {( q1 ,- |), (q 2 ,1- |)} (q 2 ,0,0) = {(q 2 , X 0)} v v u - , .u- ( q 2 ,1,1) = {( q 2 , X 1)} (q 2 ,1,0) = {(q 2 , X 0)} (q 2 ,0,1) = {( q 2 , X 1)} (q 2 ,0, X ) = (q 2 ,1, X ) = {( q 2 , XX )} (q 2 ,2, X ) = {( q3 , X )} (q 2 ,2,0) = {(q 3 ,0)} (q 2 ,2,1) = {( q3 ,1)} (q 3 ,0, X ) = (q3 ,1, X ) = {( q3 , )} (q 3 ,1,0) = (q3 ,0,1) = {( q 4 , X )} (q 4 ,0, X ) = (q 4 ,1, X ) = {( q 4 , X )} (q 4 ,2, X ) = {( f , X )} u 1 - 4 : " L - (q 0 , a,- |) = (q 0 , A- |) (q 0 , a, A) = (q 0 , AA) (q 0 , b, A) = ( q1 , ) (q1 , b, A) = (q1 , ) (q1 , c, A) = (q 2 , ) (q 2 , c, A) = (q 2 , ) (q 2 , ,- |) = (q 2 , ) . c b 2 - 4 ,q2- |- S aSc | aBc B aBb | ab 5 . w- (q 0 , ,- |) = {( q 0 , ), (q 0 ,- |)} (q 0 , , Z ) = {(q 0 , Z ), (q 0 , Z )} (q 0 ,2, Z ) = {( q1 , Z )} (q1 , , ) = {(q1 , )} (q1 , ,- |) = (q1 , ) : {0,1} : Z {0,1} {0,1} : Z {0,1,- |} : {0,1} : w 3 6 (q 0 ,0,- |) = {( q 0 , X )} (q 0 ,0, X ) = {( q 0 , XY ), (q 0 , X )} : 0 (q 0 ,1, X ) = {( q 0 , )} , X 1 !0 (q 0 ,1, Y ) = {( q 0 , )} 4 ...
View Full Document

Ask a homework question - tutors are online