midterm-03-f - University of Waterloo Waterloo, Ontario...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: University of Waterloo Waterloo, Ontario Mathematics 237 Mid-Term Test — Fall Term 2003 Duration: 1-;- hours Date: 21 October, 2003 NO AIDS PERMITTED NO CALCULATORS ALLOWED Family Name- Initials! ID. Number: SignaturezL Instructors: EZK 01 W. C. Lim (2.30pm class) 1:! 02/03 A. Kempf (11:30am class) Instructions: FOR EXAMINERS’ USE ONLY Question Maximum Mark 1. Complete the information section above, indicating your instructor’s name by a checkmark in the appro— priate box. 2. Attempt all questions, in the space provided. If you require more space, use the reverse of the pre— vious page. The marks for each question are in- dicated. Marks will be deducted for negligently presented work. Your grade will be influenced by how clearly you express your ideas, and by how well you organize your solu— tions. Justification should be provided by referring to definitions and theorems where appropriate. 100 3. This examination has eight pages. The last page is for rough work. Math 237 - Mid—Term Test Page 2 of 8 Fall Term 2003 33y "H I)" x4+ly',<x,y>¢(o,o>. m (x 'v . 1. Let flay) = [8] a) Show that lim f (:13, y) exists. Define f (0,0) so as to make f continuous at (0,0). La we a. WW) We Emu. XH+ L3) 2 )5) )(éfiflfl) 7/ X'j‘ Xu+h| XH+I\3‘ X (Kidd) 7 Exfl\ r———‘— / X4 '+'-«J| X ’E‘)‘ MM 7 13M gin/I [x]? M ‘ I + ‘ “1‘53; u. Igwr “4’ a3 S g 5 'y', )im (x! :: [Em 4.2314. mm W WW '1' IX]: 0, ,fl. en‘s}; 6M0! 6.74/01: a @ U W x“?! [12] b) With the f (0, 0) defined above, determine Whether f is differentiable at (0,0). State the definition of differentiabflity as part of your answer. t} a «Chet-m fzm‘amttdiumtttt “4 a, m and ~§§ mu$){¥{5£ 3) Jim 191.365. :gl 0le R510): £60“ Lafx) 35'ch! m Assumh-s3 4X: (3de RA sow NMHWLM' Q“) ~— Alfi), E$ «C kfis Cm’hMOuS parka? dfiyfiv'l‘k‘wt’} 51+ 95, ~H~Qn -p (S d;‘p(4’fi4*hbll 4+ (Q, Lw’nLj “4 S: Ea-szkfi ($011))" +(">m) (x44 {drab-113)) : ,_.___L M Xena] m fir (mflflqo) E K)’ ( "I -‘ ‘4 5‘3 A ' X x #3!) 4. (—Mfi (Hufth _ X a k x"+— (to) gum“? “(W gt“ CM m 40 «Cr (h wimp», 4% Am (rm-Juli: we (when; “elm” >93. ,; _ F (r 1,3334%» 2:.) 104,53; 3;) Iggy gag): gI/Y Tlms' “4’ q” (59.3), ?5=c: . x, 3‘1 nut {arwfiafiwcuy t3 4L arm Mm! 4km“; fi ,3 dome/amt «4 (0,03, Page 2 of 8 Math 237 — Mid-Term Test Page 3 of 8 Fall Term 2003 2. Suppose f : R2 —> R has continuous partial derivatives at a. [4] a) Write a formula for calculating the directional derivative of f at a in the direction of the unit vector 11. Du vi] 5:593 : (7(0le 0 1;! [8] b) Prove that the largest rate of change of f at a equals IIV f (a)||, and occurs in the direction Vf(a). m [0'31‘3 rat]: o‘[ flu“?! 6"] ‘c 4'] ,0 ls “[Le [6177“4 MM (‘4‘ D“ ml“ 9."; arc.” q Fosfiafil til (U' J u) :3! L' [Vii f 5 “1 "" “9;; a rffi‘grfl‘ - a. I l/UC- [WAS] RN) Maxim...“ bur (9.)) (9:7) 5 (aqua) WLIH -[Uthuk’ 2 [ , 3f M ’5; (‘C’]‘k»{, + M-7(g\'u1 a)»; [8] c) Calculate the rate of change of f (a), y) = ye“! at a = (0,2) in the direction from a to the point (4, —1). 3- 3w = 316:”, : :: \OE '3 a). (513 L]- N )‘U o. . VHQ‘}: (4, i) ‘5 H v: (Li,—I\~ 91,; (L, -I‘:»-(o,2‘5= (LIV?) l «y c ~51...- ~ beh., 2 __L_ r t] U‘ “\l“ . {low V 5 V ‘ ( 5; ‘3 “I. bu [:(g‘B: v 'F (54‘) " ‘ (Lu) ’[lwxztlm {m pm! («.33 : M. 0. ’ L9. _ 3 e3 ‘3 . ‘8 ‘ a '24] \\V9mv Page 3 of 8 Math 237 - Mid—Term Test Page 4 of 8 Fall Term 2003 ‘ 3. Let g(a:,y) = \/1+x2 —y2. [8] a) Using the linear approximation, find the tangent plane to the graph z = g(a:,y) at (a,b) = (2,1). g Labs) 2 0) (Q + 9X (gflx‘cfl i— 35(5‘101'9 #1. W: r (We 3 , ,__X_._ ( m:* 1 54) 2 .___3____ = 5’ JET—- “Jr fialx‘i =‘ :lflwhwil ‘43?» : 4.2L... JJ'TT’I :: _'\*)( :3 \. J ‘1 fig“ L065): 9+(xra\+;&(u,—|3 = ><+ 1% i / ’lfi’l'arfmlplam'l-o 669.)» 4+ {(3 ‘15 2: )(+ 31/31) ~i, [4] b) State a theorem relating the level surfaces of a function f : R3 -—> R and the gradient 0 vector Vf. Ci WW?) i 0 FM ‘l: (x i.) 2,) :k and 'c'hfi WK“; .Et, 4L; mrgw ‘CplC (an 134 gfidn L): ""361 («9- (2s ‘ J z (3% [8] c) Write a formula for calculating the tangent plane to a level surface of f : R3 ——> R at a. Use it to verify your result in part a). m l“an 00% lb 6‘ (Ml Wlm all {lrm‘am him ‘WLXk A mm 6; 91V” a), 4;, 9w = " \ Page 4 of 8 Math 237 — Mid-Term Test Page 5 of 8 Fall Term 2003 ‘ 4. Assume that f : R2 ——> R has continuous second partial derivatives. Suppose its gradient and Hessian matrix at (0,0) are given by Vf(o,0)=(2,—1), Hf(0,0)= . Consider g(t) = f(sin(t),sin(2t)). [10] a) Find g’(0). Lari“ L4:§ii\ V: 51MB?) 9 ‘. 3&3“ (“NB {1/ \V l 1 5-? wt i; ii ‘ ‘v - ' ‘ 3&3: .5: if + 5; fix CW“ I} mm 0 n 53oz, afar ' (“)9 aim LU» fig 3 (as 1E ’ 31.x: 2C05t ’30“ (3- g (3 w o vcos ; (0).:- DCDS 0 3 D [10] b) Find g”(0). .2 1 . 5' (a: Elf-4w 8.5.15; — grew bu OCE+ a (7 EM» “4040\“4 @4114” H ’23} m 5 L“ ‘2‘)“ O’u g i ’1 'fiinz Li'OrL out 1 W. 9 Page 5 of 8 Math 237 — Mid-Term Test Page 6 of 8 Fall Term 2003 [6] 5. a) State Taylor’s theorem With second degree remainder for a function f : R2 —> R. Mun} gr 4“”?7-9 R, C1 (2+ apw'vfi‘ (Qt “FA {h Sent Mi'fii‘bm‘ieao‘ 6(g3} e 8&2“), C "kt CQSNIA” ‘C’Lm flick 4ka+f N £04 «9 2 43(9) + V-FCQOO (xv—19$) + PHA (x3 WLM 2,915): 5'7er (£3 (x4334 gee) (gamma) + «Ewejarnj, b/l, [14] b) Let flaky) = Show that WW!) — L<0,o)($7y)l S E0152 +y2) . L9 (253: 473134 «C; (5)0140 + C‘nyng; 60, bohkp} 51"} {7(J“‘tl5 :1“ 'F, M flyGA): 3t: (l-FX143A)—i ’px [+0-+CJ)"1L (3-03 a go Sbmufil I!" (93: {Y ($331 "' {l " g)! {is}: "v Lfimfiifi : $4on % @(xiefi + 00;— (2‘) -I\ g W "M AMM l “943’ 4} 4— 71 (Ar ‘\ \ \\1 Page 6 of 8 Math 237 — Mid-Term Test Page 7 of 8 Fall Term 2003 [4] 6. [BONUS] Prove that if f satisfies |f(a:,y)l S 51:2 + y2 for all (23,31) 6 R2, then f is differentiable at (0,0). ‘ . O Page 7 of 8 ...
View Full Document

Page1 / 7

midterm-03-f - University of Waterloo Waterloo, Ontario...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online