main_course - AM351: ODE II Spring 2008 2 AM 351 ODE II...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AM351: ODE II Spring 2008 2 AM 351 ODE II Contents 1 Theory of higher order linear ODEs 5 1.1 Existence and uniqueness of solutions of nth order linear ODEs 5 1.2 Homogeneous ODEs and superposition theorem . . . . . . . . 6 1.2.1 Linear operator . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 The superposition theorem . . . . . . . . . . . . . . . . 7 1.3 Solutions of inhomogeneous ODES . . . . . . . . . . . . . . . 11 1.4 Qualitative properties of solutions . . . . . . . . . . . . . . . . 12 1.4.1 Equilibrium solutions . . . . . . . . . . . . . . . . . . . 12 1.4.2 Oscillatory solutions . . . . . . . . . . . . . . . . . . . 14 2 Theory of first order linear systems of ODEs 21 2.1 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Reformulating higher order ODEs . . . . . . . . . . . . 21 2.1.2 Existence and Uniqueness . . . . . . . . . . . . . . . . 22 2.1.3 General solutions of the homogeneous problem . . . . . 22 2.2 General solutions of the inhomogeneous problem . . . . . . . . 24 2.3 How to solve homogeneous first order linear systems of ODEs with constant coefficients . . . . . . . . . . . . . . . . . . . . . 25 2.4 Fundamental matrices and the solution to the inhomogeneous ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 The matrix exponential . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 Fundamental matrices and exponential matrices . . . . 28 2.5.2 Calculating the matrix exponential . . . . . . . . . . . 30 2.6 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . 34 3 Existence and Uniqueness. Well posed problems 35 3.1 Local and Global existence theorems . . . . . . . . . . . . . . 35 3.1.1 Vector integral equation . . . . . . . . . . . . . . . . . 35 3 4 AM 351 ODE II 3.1.2 Picard iteration (or successive approximation) . . . . . 36 3.1.3 Global and local existence theorems . . . . . . . . . . . 36 3.2 Uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Power Series 41 5 Numerical approximation of IVPs 43 5.1 Basics of numerical approximation . . . . . . . . . . . . . . . . 43 5.1.1 The Forward Euler Method (FE) . . . . . . . . . . . . 43 5.1.2 The Backward Euler Method (BE) . . . . . . . . . . . 44 5.1.3 The Midpoint Rule (MR) . . . . . . . . . . . . . . . . 45 5.2 Convergence of numerical schemes . . . . . . . . . . . . . . . . 45 5.3 Linear Multistep Methods (LM) . . . . . . . . . . . . . . . . . 47 5.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.3 Convergence of LM schemes: Dahlquist theorem. . . . 50 5.3.4 Long-time stability . . . . . . . . . . . . . . . . . . . . 51 5.4 Non Linear One step Methods (NLO) . . . . . . . . . . . . . . 52 5.4.1 Definition of NLO . . . . . . . . . . . . . . . . . . . . . 52 5.4.2 Convergence of NLO methods . . . . . . . . . . . . . . 53 5.4.3 Local and global order of NLO schemes . . . . . . . . . 54 5.4.4 Long-time stability of NLO schemes . . . . . . . . . . .Long-time stability of NLO schemes ....
View Full Document

Page1 / 69

main_course - AM351: ODE II Spring 2008 2 AM 351 ODE II...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online