PS_7_QUESTIONS - nd , 9 th , 16 th , . .. numbers in the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
IE 306 PS#7 10.04.09 1. Consider the below 50 numbers. Based on runs up and runs down, determine whether the hypothesis of independence can be rejected where α = 0.05. 0.34 0.90 0.25 0.89 0.87 0.44 0.12 0.21 0.46 0.67 0.83 0.76 0.79 0.64 0.70 0.81 0.94 0.74 0.22 0.74 0.96 0.99 0.77 0.67 0.56 0.41 0.52 0.73 0.99 0.02 0.47 0.30 0.17 0.82 0.56 0.05 0.45 0.31 0.78 0.05 0.79 0.71 0.23 0.19 0.82 0.93 0.65 0.37 0.39 0.42 2. Consider the below 50 numbers. Determine whether there is an excessive number of runs above or below the mean. Use α = 0.05. 0.99 0.17 0.99 0.46 0.05 0.66 0.10 0.42 0.18 0.49 0.37 0.51 0.54 0.01 0.81 0.28 0.69 0.34 0.75 0.49 0.72 0.43 0.56 0.97 0.30 0.94 0.96 0.58 0.73 0.05 0.06 0.39 0.84 0.24 0.40 0.64 0.40 0.19 0.79 0.62 0.18 0.26 0.97 0.88 0.64 0.47 0.60 0.11 0.29 0.78 3. Consider the below 60 values. Test whether the 2
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: nd , 9 th , 16 th , . .. numbers in the sequence are autocorrelated where α = 0.05. 0.30 0.48 0.36 0.01 0.54 0.34 0.96 0.06 0.61 0.85 0.48 0.86 0.14 0.86 0.89 0.37 0.49 0.60 0.04 0.83 0.42 0.83 0.37 0.21 0.90 0.89 0.91 0.79 0.57 0.99 0.95 0.27 0.41 0.81 0.96 0.31 0.09 0.06 0.23 0.77 0.73 0.47 0.13 0.55 0.11 0.75 0.36 0.25 0.23 0.72 0.60 0.84 0.70 0.30 0.26 0.38 0.05 0.19 0.73 0.44 4. Develop a random-variate generator for a random variable X with the pdf 5. Develop a generation scheme for the triangular distribution with pdf Generate 10 values of the random variate compute the sample mean, and compare it to the true mean of the distribution. 6. The cdf of a discrete random variable X is given by When n = 4, generate three values of X using R 1 = 0.83, R 2 = 0.24, and R 3 = 0.57....
View Full Document

This note was uploaded on 07/30/2009 for the course INDUSTRIAL ie306 taught by Professor Alirizakaylan during the Spring '09 term at Boğaziçi University.

Ask a homework question - tutors are online