Unformatted text preview: AP® Physics C: Electricity and Magnetism
2005 FreeResponse Questions The College Board: Connecting Students to College Success
The College Board is a notforprofit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000
high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid,
enrollment, and teaching and learning. Among its bestknown programs are the SAT®, the PSAT/NMSQT®, and the Advanced
Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is
embodied in all of its programs, services, activities, and concerns. Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP,
AP Vertical Teams, PreAP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board.
Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT
Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board.
PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship
Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College
Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.
Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program and PreAP: apcentral.collegeboard.com. TABLE OF INFORMATION FOR 2005
CONSTANTS AND CONVERSION FACTORS
27 = 1.66 = 931 MeV/c ¥ 1 unified atomic mass unit, 10  1u UNITS
Name Symbol 10 9 giga G kilogram kg 10 6 mega M 10 3 kilo k centi c milli m micro µ nano n pico p mn = 1.67 × 10 −27 kg second s Electron mass, me = 9.11 × 10 −31 kg ampere A e = 1.60 × 10 C kelvin N0 = 6.02 × 10 23 mol −1
R = Universal gas constant, K mole mol hertz 8.31 J / ( mol K )
◊ Avogadro’s number, Hz Boltzmann’s constant, k B = 1.38 × 10 −23 J / K Speed of light, c = 3.00 × 10 8 m / s newton N Planck’s constant, h = 6.63 × 10 −34 J ⋅ s pascal Pa = 4.14 × 10 −15 eV ⋅ s hc = 1.99 × 10 −25 k = 1 / 4π θ sin θ cos θ tan θ C 0 0 1 0 V
Ω 30 1/2 3 /2 3 /3 H 37 3/5 4/5 3/4 farad = G 6.67 g = 9.8 m / s 10 11 F tesla T 45 2 /2 2 /2 1 degree
Celsius C 53 4/5 3/5 4/3 electronvolt eV 60 3 /2 1/2 3 90 3 m / kg s 2 1 atm = 1.0 × 10 5 N / m 2
= 1.0 × 10 5 Pa 1 electron volt, J
W henry k = µ 0 / 4π = 10 −7 (T ⋅ m) / A
¥ 1 atmosphere pressure, VALUES OF TRIGONOMETRIC
FUNCTIONS FOR COMMON ANGLES volt 2 = 9.0 × 10 9 N ⋅ m 2 / C 2  Acceleration due to gravity
at the Earth’s surface, 10 −12 1 0 ∞ ' Universal gravitational constant, 10 −9 ohm C / N⋅m
2 µ 0 = 4π × 10 −7 (T ⋅ m) / A Vacuum permeability,
Magnetic constant, 0 = 8.85 × 10 10 −6 coulomb ◊ Coulomb’s law constant, 0 10 −3 watt J⋅m −12 10 −2 joule = 1.24 × 10 3 eV ⋅ nm Vacuum permittivity, Symbol m Neutron mass, Magnitude of the electron charge, Prefix meter 2 −19 Factor kg m p = 1.67 × 10 −27 kg Proton mass, PREFIXES 1 eV = 1.60 × 10 −19 J 2 The following conventions are used in this examination.
I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
II. The direction of any electric current is the direction of flow of positive charge (conventional current).
III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge. 2 ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2004 and 2005 t a= w Rs = t
12
t
2
a + + w = FM = qv × B
B•d = 1
f Bs = = ˆ
r e = p r2
Gm1m2
r 0 nI = B • dA dm
dt
dI
= −L
dt
1
U L = LI 2
2 e =
= p m g
Gm1m2 0I F= Id ×B m
k f = w
p = q FG 1
Ri z = 2 i 3 =− f q + w Tp 1
=
Rp Ri P = IV 12
kx
2 2 i z = w kx 0 2 = UG a = Ts A
V = IR w= u Us R= I 0t dQ
dt
1
1
Uc = QV = CV 2
2
2
I= m ¥=
w=
Â=
Ú=
0 1
1
=
Cs
i Ci m t = tÂ
=t ¥ Fs T rp
12
I
2 Ci i ∑ =
r m Cp = d ∑ Â
Â= mr mr 2 a
w u = w r 2 dm K q I net rcm
L m D = F 0A r = I r Q
V ∑ u r 2 0 q1 q 2
r Q
q
R
r
t
U
V =
=
=
=
=
=
=
=
=
m=
= k = r C= 4 1 f = u 2 C= ∑ Ú= ∑ ac UE = qV = r
u £ m F dr
12
K
m
2
dW
P
dt
P Fv
Ug
mgh k N p p acceleration
force
frequency
height
rotational inertia
impulse
kinetic energy
spring constant
length
angular momentum
mass
normal force
power
momentum
radius or distance
position vector
period
time
potential energy
velocity or speed
work done on a system
position
coefficient of friction
angle
torque
angular speed
angular acceleration p =
Ú= W D= = F fric = dp
dt
F dt
mv ma =
=
=
=
=
=
=
=
=
L=
m=
N=
P=
p=
r=
r=
T=
t=
U=
=
W=
x=
=
=
=
=
= ∑ =Â
=u u J
p Fnet a
F
f
h
I
J
K
k e + F ( F  = 2 0 ) + u u
2 12
at
2
2 a x x0 0t + = u x0 at + x 0 ELECTRICITY AND MAGNETISM
1 q1 q 2
A = area
F=
2
B = magnetic field
40r
C = capacitance
F
d = distance
E=
q
E = electric field
= emf
Q
E • dA =
F = force
0
I = current
dV
L = inductance
E=−
= length
dr
n = number of loops of wire
qi
1
V=
per unit length
4 0 i ri
P = power
p MECHANICS charge
point charge
resistance
distance
time
potential or stored energy
electric potential
velocity or speed
resistivity
magnetic flux
dielectric constant ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2004 and 2005
GEOMETRY AND TRIGONOMETRY
area
circumference
volume
surface area
base
height
length
width
radius d f d f du
dx du dx
dn
x
nxn 1
dx
dx
e
ex
dx
d
1
1n x
dx
x
d
sin x cos x
dx
d
cos x
sin x
dx
1 n1
xn dx
x ,n
n1
ex dx ex
dx
ln x
x
cos xdx sin x
(
(
( =) ( =) = Ú = Ú Ú
Ú
4 sin xdx =
= p q a
b = p
p p Ú
b + p
p p q + a
90° cos x 1 π ( =) c b
c = =) q
q tan = =) cos  A=
C=
V=
S=
b=
h=
=
w=
r= = Rectangle
A = bh
Triangle
1
A = bh
2
Circle
A = r2
C=2r
Parallelepiped
V = wh
Cylinder
V = r2
S = 2 r + 2 r2
Sphere
43
V=
r
3
S = 4 r2
Right Triangle
a 2 + b2 = c2
a
sin =
c CALCULUS 2005 AP® PHYSICS C: ELECTRICITY AND MAGNETISM
FREERESPONSE QUESTIONS
PHYSICS C
Section II, ELECTRICITY AND MAGNETISM
Time—45 minutes
3 Questions
Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions,
which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in the
pink booklet in the spaces provided after each part, NOT in this green insert. E&M. 1.
Consider the electric field diagram above. = (a) Points A, B, and C are all located at y 0.06 m . i. At which of these three points is the magnitude of the electric field the greatest? Justify your answer.
ii. At which of these three points is the electric potential the greatest? Justify your answer.
(b) An electron is released from rest at point B.
i. Qualitatively describe the electron’s motion in terms of direction, speed, and acceleration.
ii. Calculate the electron’s speed after it has moved through a potential difference of 10 V.
(c) Points B and C are separated by a potential difference of 20 V. Estimate the magnitude of the electric field
midway between them and state any assumptions that you make.
(d) On the diagram, draw an equipotential line that passes through point D and intersects at least three electric
field lines. Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).
GO ON TO THE NEXT PAGE.
5 2005 AP® PHYSICS C: ELECTRICITY AND MAGNETISM
FREERESPONSE QUESTIONS E&M. 2.
In the circuit shown above, resistors 1 and 2 of resistance R1 and R2 , respectively, and an inductor of
inductance L are connected to a battery of emf
and a switch S. The switch is closed at time t = 0.
Express all algebraic answers in terms of the given quantities and fundamental constants. e (a) Determine the current through resistor 1 immediately after the switch is closed.
(b) Determine the magnitude of the initial rate of change of current, dI dt , in the inductor.
(c) Determine the current through the battery a long time after the switch has been closed.
(d) On the axes below, sketch a graph of the current through the battery as a function of time. Some time after steady state has been reached, the switch is opened.
(e) Determine the voltage across resistor 2 just after the switch has been opened. Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents). GO ON TO THE NEXT PAGE.
6 2005 AP® PHYSICS C: ELECTRICITY AND MAGNETISM
FREERESPONSE QUESTIONS E&M. 3.
A student performs an experiment to measure the magnetic field along the axis of the long, 100turn
solenoid PQ shown above. She connects ends P and Q of the solenoid to a variable power supply and
an ammeter as shown. End P of the solenoid is taped at the 0 cm mark of a meterstick. The solenoid can be
stretched so that the position of end Q can be varied. The student then positions a Hall probe* in the center
of the solenoid to measure the magnetic field along its axis. She measures the field for a fixed current of
3.0 A and various positions of the end Q. The data she obtains are shown below.
Measured Magnetic Field (T)
(directed from P to Q) 6.80 4 80 4.90 5 100 4.00 10
10
10 4
4
4  60 4  3 10 4  7.70 10  50 ¥
¥
¥
¥
¥ 2 9.70 n
(turns/m)  1 Position of End Q
(cm)
40 Trial (a) Complete the last column of the table above by calculating the number of turns per meter.
* A Hall Probe is a device used to measure the magnetic field at a point. Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents). GO ON TO THE NEXT PAGE.
7 2005 AP® PHYSICS C: ELECTRICITY AND MAGNETISM
FREERESPONSE QUESTIONS
(b) On the axes below, plot the measured magnetic field B versus n. Draw a bestfit straight line for the data
points. 7  10 ( 4 T m A , determine the percent error in the experimental
i m (d) Using the theoretical value of 0
value of 0 computed in part (c). the magnetic permeability of vacuum.
) 0, (c) From the graph, obtain the value of ¥p = m m END OF SECTION II, ELECTRICITY AND MAGNETISM Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents). 8 ...
View
Full Document
 Spring '08
 Reich
 Physics, Electricity And Magnetism, Magnetism, Magnetic Field, College Entrance Examination Board, college entrance examination, Entrance Examination Board

Click to edit the document details