Chap5 Section2

Elementary and Intermediate Algebra: Graphs & Models (3rd Edition)

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 5.2 Vertex Form 453 Version: Fall 2007 5.2 Exercises In Exercises 1- 8 , expand the binomial. 1. x + 4 5 2 2. x − 4 5 2 3. ( x + 3) 2 4. ( x + 5) 2 5. ( x − 7) 2 6. x − 2 5 2 7. ( x − 6) 2 8. x − 5 2 2 In Exercises 9- 16 , factor the perfect square trinomial. 9. x 2 − 6 5 x + 9 25 10. x 2 + 5 x + 25 4 11. x 2 − 12 x + 36 12. x 2 + 3 x + 9 4 13. x 2 + 12 x + 36 14. x 2 − 3 2 x + 9 16 15. x 2 + 18 x + 81 Copyrighted material. See: http://msenux.redwoods.edu/IntAlgText/ 1 16. x 2 + 10 x + 25 In Exercises 17- 24 , transform the given quadratic function into vertex form f ( x ) = ( x − h ) 2 + k by completing the square. 17. f ( x ) = x 2 − x + 8 18. f ( x ) = x 2 + x − 7 19. f ( x ) = x 2 − 5 x − 4 20. f ( x ) = x 2 + 7 x − 1 21. f ( x ) = x 2 + 2 x − 6 22. f ( x ) = x 2 + 4 x + 8 23. f ( x ) = x 2 − 9 x + 3 24. f ( x ) = x 2 − 7 x + 8 In Exercises 25- 32 , transform the given quadratic function into vertex form f ( x ) = a ( x − h ) 2 + k by completing the square. 25. f ( x ) = − 2 x 2 − 9 x − 3 26. f ( x ) = − 4 x 2 − 6 x + 1 27. f ( x ) = 5 x 2 + 5 x + 5 28. f ( x ) = 3 x 2 − 4 x − 6 29. f ( x ) = 5 x 2 + 7 x − 3 30. f ( x ) = 5 x 2 + 6 x + 4 31. f ( x ) = − x 2 − x + 4 32. f ( x ) = − 3 x 2 − 6 x + 4 454 Chapter 5 Quadratic Functions Version: Fall 2007 In Exercises 33- 38 , find the vertex of the graph of the given quadratic func- tion. 33. f ( x ) = − 2 x 2 + 5 x + 3 34. f ( x ) = x 2 + 5 x + 8 35. f ( x ) = − 4 x 2 − 4 x + 1 36. f ( x ) = 5 x 2 + 7 x + 8 37. f ( x ) = 4 x 2 + 2 x + 8 38. f ( x ) = x 2 + x − 7 In Exercises 39- 44 , find the axis of sym- metry of the graph of the given quadratic function. 39. f ( x ) = − 5 x 2 − 7 x − 8 40. f ( x ) = x 2 + 6 x + 3 41. f ( x ) = − 2 x 2 − 5 x − 8 42. f ( x ) = − x 2 − 6 x + 2 43. f ( x ) = − 5 x 2 + x + 6 44. f ( x ) = x 2 − 9 x − 6 For each of the quadratic functions in Exercises 45- 66 , perform each of the following tasks. i. Use the technique of completing the square to place the given quadratic function in vertex form. ii. Set up a coordinate system on a sheet of graph paper. Label and scale each axis. iii. Draw the axis of symmetry and label it with its equation. Plot the vertex and label it with its coordinates. iv. Set up a table near your coordinate system that calculates the coordinates of two points on either side of the axis of symmetry. Plot these points and their mirror images across the axis of symmetry. Draw the parabola and label it with its equation v. Use the graph of the parabola to de- termine the domain and range of the quadratic function. Describe the do- main and range using interval nota- tion....
View Full Document

Page1 / 26

Chap5 Section2 - Section 5.2 Vertex Form 453 Version: Fall...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online