08_contour_integration.pdf - MH2801 Complex Methods for the Sciences 8 Contour Integration Contour integration is a powerful technique based on complex

# 08_contour_integration.pdf - MH2801 Complex Methods for the...

This preview shows page 1 - 3 out of 13 pages.

MH2801: Complex Methods for the Sciences 8 Contour Integration Contour integration is a powerful technique, based on complex analysis, that allows us to solve certain integrals that are otherwise difficult or impossible. Contour integrals have important applications in many areas of physics, particularly in the study of waves and oscillations. 8.1 Contour integrals We have previously studied what it means to take the integral of a real function. To recap: if f ( x ) is a real function, the integral from x = a to x = b is defined by dividing the interval into N segments, and evaluating the sum of f ( x x on each segment, in the limit where N goes to infinity: Z b a dx f ( x ) = lim N 0 N X n =0 Δ x f ( x n ) , where x n = a + n Δ x, Δ x = b - a N . (1) Now consider the case where f is a complex function of a complex variable. The straight- foward way to define the integral of f ( z ) is by an analogous expression like this: lim N 0 N X n =0 Δ z f ( z n ) (2) However, since f takes complex inputs, the values of z n need not lie along the real line. In general, the complex numbers z n form a set of points in the two-dimensional complex plane. We can imagine chaining together a sequence of points z 1 , z 2 , . . . , z N , which are separated by displacements Δ z 1 , Δ z 2 , Δ z 3 , . . . , Δ z N - 1 , such that z 2 = z 1 + Δ z 1 , z 3 = z 2 + Δ z 2 , z 4 = z 3 + Δ z 3 , . . . = . . . z N = z N - 1 + Δ z N - 1 . (3) Then the sum we are interested in is N - 1 X n =1 Δ z n f ( z n ) = Δ z 1 f ( z 1 ) + Δ z 2 f ( z 2 ) + · · · + Δ z N - 1 f ( z N - 1 ) . (4) 58
MH2801: Complex Methods for the Sciences

#### You've reached the end of your free preview.

Want to read all 13 pages?

• Fall '17
• γ, Methods of contour integration