Ch 01_03v2

Ch 01_03v2 - Ch01 (OR WorldWarII19411945 RapidGrowthDueTo 1.GoodTheory 2.ComputerRevolution 3.GreatSoftware 1 OR=ManagementScience ObjectiveofOR

Info iconThis preview shows pages 1–21. Sign up to view the full content.

View Full Document Right Arrow Icon
Ch 01 History of Operations Research (OR) World War II – 1941-1945 Rapid Growth Due To 1. Good Theory 2. Computer Revolution 3. Great Software 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
OR = Management Science BS in Management Science MS in Operations Research PhD in Operations Research Objective of OR Find the “best” solution = “optimal” solution 2
Background image of page 2
Societies the Institute for Operations Research and the Management Sciences INFORMS – student membership is about $30/year World Series of OR  Continental Airlines Story (better, cheeper, faster) 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Ch 02 – How To Do An OR Study My Experience With Carreker-CheckFree-FiServ 1. Define the problem 2. Formulate a math model - – 2000 lines of code (OPL) 3. Develop Software – integrate with database Implemented and Successful! 4
Background image of page 4
Saving Money For Their Clients 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Ch 03 – Linear Programming Linear – all functions are linear f(x) = a 1 x 1  + a 2 x 2  + . .. + a n x n     Programming – not computer programming    but a military plan 6
Background image of page 6
Wyndor Glass Company Production Time/Batch (Hours) Possible Solution: x1 = 1 and x2 = 1 Profit: $3000 + $5000 = $8000       Can you do better? 7 Plant Products Plant Capacity 1 2 1 1 HR 0 HR 4 HRS 2 0 HRS 2 HRS 12 HRS 3 3 HRS 2 HRS 18 HRS Profit/Batch $3000 $5000 - Variables x1 x2 -
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The Model maximize  3000x1 + 5000x2 subject to x1 <  4 2x2 <  12 3x1  +  2x2 <  18 x1 >  0  x2 >  0 2 variables and 5 constraints Solve Graphically 8
Background image of page 8
x1 <  4 2 points for x1 = 4 are (4,0), (4,4)    9
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2x2 <  12 2 points for 2x2 = 12 are (0,6), (6,6)    10
Background image of page 10
3x1 + 2x2 <  18  3x1 + 2x2 = 18 points (6,0), (0,9)    11
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
x1 >  0  non-negativity    12
Background image of page 12
Obj Function  3000x1 + 5000x2 = 18000  (6,0) (0,3.6) 13
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Move Obj Function to Last Point  (6,0) (0,3.6) 14 Optimum
Background image of page 14
To Determine Optimum Point Solve 2 equations in 2 unknowns x2 = 6 and 3x1 + 2x2 = 18 therefore, 3x1 + 2(6) = 18 => 3x1 = 6 => x1 =  2 optimum is x1 = 2, x2 = 6 15
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The Optimal Objective Value is 3000(2)+5000(6) = 36000   16 Optimum at (2,6)
Background image of page 16
Optimal Solution x1 = 2 and x2 = 6 Plant 1: Use  2 Hours  (4 available) Plant 2: Use 12 Hours (12 available) Plant 3: Use 18 Hours (18 available) Profit: (3000)(2) + (5000)(6) = 36,000 Can anyone in the universe beat this? 17
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
AMPL Model # WyndorGlass; reset; option solver cplex; var x1 >= 0;  var x2 >= 0; maximize Profit: 3000*x1+5000*x2; subject to C1: x1 <= 4; subject to C2: 2*x2 <= 12; subject to C3: 3*x1+2*x2 <= 18; solve; expand; display x1,x2; 18
Background image of page 18
Solution sw: ampl ampl: model a:wyndor.txt; CPLEX 10.1.0: optimal solution; objective 36000 0 dual simplex iterations (0 in phase I) maximize Profit: 3000*x1 + 5000*x2; subject to C1: x1 <= 4; subject to C2: 2*x2 <= 12; subject to C3: 3*x1 + 2*x2 <= 18; x1 = 2 x2 = 6 ampl:  19
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Terminology for Solutions p. 34
Background image of page 20
Image of page 21
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 08/11/2009 for the course EMIS 3360 taught by Professor Dr.kennington during the Fall '08 term at SMU.

Page1 / 67

Ch 01_03v2 - Ch01 (OR WorldWarII19411945 RapidGrowthDueTo 1.GoodTheory 2.ComputerRevolution 3.GreatSoftware 1 OR=ManagementScience ObjectiveofOR

This preview shows document pages 1 - 21. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online