CH28 - CHAPTER 28—ELECTRIC CIRCUITS ActivPhysics can help...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 28—ELECTRIC CIRCUITS ActivPhysics can help with these problems: Section 12, “DC Circuits” Section 28-1:—Circuits and Symbols Problem 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R R 2 3 and connected to the lower-voltage end of R 1 , then returned to the battery’s negative terminal, and a capacitor across R 2 . Solution A literal reading of the circuit specifications results in connections like those in sketch (a). Because the connecting wires are assumed to have no resistance (a real wire is represented by a separate resistor), a topologically equivalent circuit diagram is shown in sketch (b). Problem 1 Solution (a). Problem 1 Solution (b). Problem 2. A circuit consists of two batteries, a resistor, and a capacitor, all in series. Sketch this circuit. Does the description allow any flexibility in how you draw the circuit? Solution In a series circuit, the same current must flow through all elements. One possibility is shown. The order of elements and the polarity of the battery connections are not specified. Problem 2 Solution. Problem 3. Resistors R 1 and R 2 are connected in series, and this series combination is in parallel with R 3 . This parallel 208 CHAPTER 28 combination is connected across a battery whose internal resistance is R int . Draw a diagram representing this circuit. Solution The circuit has three parallel branches: one with R 1 and R 2 in series; one with just R 3 ; and one with the battery (an ideal emf in series with the internal resistance). Problem 3 Solution. Section 28-2:—Electromotive Force Problem 4. What is the emf of a battery that delivers 27 J of energy as it moves 3.0 C between its terminals? Solution From the definition of emf (as work per unit charge), E = = = W q = = 27 3 9 J C V. Problem 5. A 1.5-V battery stores 4.5 kJ of energy. How long can it light a flashlight bulb that draws 0.60 A? Solution The average power, supplied by the battery to the bulb, multiplied by the time equals the energy capacity of the battery. For an ideal battery, P E = I , therefore E It = 4 5 . , kJ or t = = × = 4 5 15 0 60 5 10 139 3 . ( . )( . ) . kJ V A s h. = Problem 6. If you accidentally leave your car headlights (current drain 5 A) on for an hour, how much of the 12-V battery’s chemical energy is used up? Solution The power delivered by an emf is E I , so (if the voltage and current remain constant) the energy converted is E It = = ( )( )( ) . 12 5 3600 216 V A s kJ Problem 7. A battery stores 50 W h ⋅ of chemical energy. If it uses up this energy moving 3 0 10 4 . × C through a circuit, what is its voltage?...
View Full Document

This note was uploaded on 08/12/2009 for the course PHY 122 taught by Professor L.rose during the Spring '07 term at New Mexico Junior College.

Page1 / 22

CH28 - CHAPTER 28—ELECTRIC CIRCUITS ActivPhysics can help...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online