Homework Solution Chapter 3

# Homework Solution - Worked out solutions which have been graded by the instructor

This preview shows pages 1–4. Sign up to view the full content.

CHAPTER 3 Applications of Differentiation Section 3.1 Extrema on an Interval . . . . . . . . . . . . . . . . . . . 191 Section 3.2 Rolle’s Theorem and the Mean Value Theorem . . . . . . 199 Section 3.3 Increasing and Decreasing Functions and the First Derivative Test . . . . . . . . . . . . . . . . . . 212 Section 3.4 Concavity and the Second Derivative Test . . . . . . . . . 234 Section 3.5 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . 250 Section 3.6 A Summary of Curve Sketching . . . . . . . . . . . . . . 267 Section 3.7 Optimization Problems . . . . . . . . . . . . . . . . . . . 285 Section 3.8 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 306 Section 3.9 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . 315 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
191 CHAPTER 3 Applications of Differentiation Section 3.1 Extrema on an Interval 1. A: neither B: absolute maximum (and relative maximum) C: neither D: neither E: relative maximum F: relative minimum G: neither 2. A: absolute minimum B: relative maximum C: neither D: relative minimum E: relative maximum F: relative minimum G: neither 4. f 9 s 2 d 5 0 f s 0 d 5 0 f s x d 52 p 2 sin x 2 f s x d 5 cos x 2 6. f 1 2 2 3 2 5 0 3 2 s x 1 1 d 2 1 y 2 s 3 x 1 2 d 3 2 s x 1 1 d 2 1 y 2 f x 1 2 s x 1 1 dg f s x d 3 x 3 1 2 s x 1 1 d 2 1 y 2 4 1 ± x 1 1 s 2 3 d f s x d 3 x ± x 1 1 3. f s 0 d 5 0 f s x d 5 s x 2 1 4 ds 2 x d 2 s x 2 ds 2 x d s x 2 1 4 d 2 5 8 x s x 2 1 4 d 2 f s x d 5 x 2 x 2 1 4 5. f s 3 d 5 1 2 27 3 3 5 1 2 1 5 0 f s x d 5 1 2 27 x 2 3 5 1 2 27 x 3 f s x d 5 x 1 27 2 x 2 5 x 1 27 2 x 2 2 8. Using the limit definition of the derivative, does not exist, since the one-sided derivatives are not equal. f s 0 d lim x 0 1 f s x d 2 f s 0 d x 2 0 5 lim x 0 1 s 4 2 | x | d 2 4 x 2 0 1 lim x 0 2 f s x d 2 f s 0 d x 2 0 5 lim x 0 2 s 4 2 | x | d 2 4 x 5 1 10. Critical number: neither x 5 0: x 5 0 7. is undefined. f s 2 2 d f s x d 5 2 3 s x 1 2 d 2 1 y 3 f s x d 5 s x 1 2 d 2 y 3 9. Critical number: absolute maximum x 5 2: x 5 2 11. Critical numbers: absolute maximum absolute minimum x 5 2: x 5 1, 3: x 5 1, 2, 3
192 Chapter 3 Applications of Differentiation 12. Critical numbers: neither absolute maximum x 5 5: x 5 2: x 5 2, 5 14. Critical numbers: x 5 0, x 5 ± ± 2 g 9 s x d 5 4 x 3 2 8 x 5 4 x s x 2 2 2 d g s x d 5 x 2 s x 2 2 4 d 5 x 4 2 4 x 2 13. Critical numbers: x 5 0, x 5 2 f s x d 5 3 x 2 2 6 x 5 3 x s x 2 2 d f s x d 5 x 2 s x 2 3 d 5 x 3 2 3 x 2 15. Critical number: t 5 8 3 . 5 8 2 3 t 2 ± 4 2 t 5 1 2 s 4 2 t d 2 1 y 2 f 2 t 1 2 s 4 2 t dg g s t d 5 t 3 1 2 s 4 2 t d 2 1 y 2 s 2 1 d 4 1 s 4 2 t d 1 y 2 g s t d 5 t ± 4 2 t , t < 3 17. On critical numbers: x 5 p 3 , x 5 , x 5 5 3 s 0, 2 d , h s x d 5 2 sin x cos x 2 sin x 5 sin x s 2 cos x 2 1 d h s x d 5 sin 2 x 1 cos x , 0 < x < 2 16. Critical numbers: x 5 ± 1 f s x d 5 s x 2 1 1 ds 4 d 2 s 4 x ds 2 x d s x 2 1 1 d 2 5 4 s 1 2 x 2 d s x 2 1 1 d 2 f s x d 5 4 x x 2 1 1 18. On critical numbers: u 5 7 6 , 5 11 6 s 0, 2 d , 5 sec 2 s 2 sin 1 1 d 5 sec 3 2 1 sin cos 2 1 1 cos 4 5 sec s 2 tan 1 sec d f s d 5 2 sec tan 1 sec 2 f s d 5 2 sec 1 tan , 0 < < 2 19. Left endpoint: Maximum Right endpoint: Minimum s 2, 2 d s 2 1, 8 d f s x d 52 2 No critical numbers f s x d 5 2 s 3 2 x d , f 2 1, 2 g 21.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/01/2008 for the course BIOL 1362 taught by Professor Richardknapp during the Spring '08 term at SUNY Adirondack.

### Page1 / 159

Homework Solution - Worked out solutions which have been graded by the instructor

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online