12%20Competing%20Design%202_21_08

# 12%20Competing%20Design%202_21_08 - Two Designs for...

This preview shows pages 1–3. Sign up to view the full content.

1 1 Choosing between Competing Experimental Designs Peng Liu 2/21/2008 2 Two Designs for Comparing Two Treatments 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 Design 2 Design 1 3 Design 1: Mixed Linear Model for a Single Gene Y 1111 = μ + τ 1 + δ 1 +s 1 +b 11 +e 1111 Y 1221 = μ + τ 1 + δ 2 +s 2 +b 11 +e 1221 Y ijkl = μ + τ i + δ j +s k +b il +e ijkl Y 1132 = μ + τ 1 + δ 1 +s 3 +b 12 +e 1132 Y 1242 = μ + τ 1 + δ 2 +s 4 +b 12 +e 1242 Y 1153 = μ + τ 1 + δ 1 +s 5 +b 13 +e 1153 Y 1263 = μ + τ 1 + δ 2 +s 6 +b 13 +e 1263 Y 1174 = μ + τ 1 + δ 1 +s 7 +b 14 +e 1174 Y 1284 = μ + τ 1 + δ 2 +s 8 +b 14 +e 1284 Y 2211= μ + τ 2 + δ 2 +s 1 +b 21 +e 2211 Y 2121 = μ + τ 2 + δ 1 +s 2 +b 21 +e 2121 Y 2232 = μ + τ 2 + δ 2 +s 3 +b 22 +e 2232 Y 2142 = μ + τ 2 + δ 1 +s 4 +b 22 +e 2142 Y 2253 = μ + τ 2 + δ 2 +s 5 +b 23 +e 2253 Y 2163 = μ + τ 2 + δ 1 +s 6 +b 23 +e 2163 Y 2274 = μ + τ 2 + δ 2 +s 7 +b 24 +e 2274 Y 2184 = μ + τ 2 + δ 1 +s 8 +b 24 +e 2184 4 Design 2: Mixed Linear Model for a Single Gene Y 1111 = μ + τ 1 + δ 1 +s 1 +b 11 +e 1111 Y 1222 = μ + τ 1 + δ 2 +s 2 +b 12 +e 1222 Y ijkl = μ + τ i + δ j +s k +b il +e ijkl Y 1133 = μ + τ 1 + δ 1 +s 3 +b 13 +e 1133 Y 1244 = μ + τ 1 + δ 2 +s 4 +b 14 +e 1244 Y 1155 = μ + τ 1 + δ 1 +s 5 +b 15 +e 1155 Y 1266 = μ + τ 1 + δ 2 +s 6 +b 16 +e 1266 Y 1177 = μ + τ 1 + δ 1 +s 7 +b 17 +e 1177 Y 1288 = μ + τ 1 + δ 2 +s 8 +b 18 +e 1288 Y 2211= μ + τ 2 + δ 2 +s 1 +b 21 +e 2211 Y 2122 = μ + τ 2 + δ 1 +s 2 +b 22 +e 2122 Y 2233 = μ + τ 2 + δ 2 +s 3 +b 23 +e 2233 Y 2144 = μ + τ 2 + δ 1 +s 4 +b 24 +e 2144 Y 2255 = μ + τ 2 + δ 2 +s 5 +b 25 +e 2255 Y 2166 = μ + τ 2 + δ 1 +s 6 +b 26 +e 2166 Y 2277 = μ + τ 2 + δ 2 +s 7 +b 27 +e 2277 Y 2188 = μ + τ 2 + δ 1 +s 8 +b 28 +e 2188

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 5 Design 2: Mixed Linear Model for a Single Gene Y 1111 = μ + τ 1 + δ 1 +s 1 +b 11 +e 1111 Y 1222 = μ + τ 1 + δ 2 +s 2 +b 12 +e 1222 Note that b and e are completely confounded in Design 2. Thus we would use only one random residual term for both factors, but we write the terms separately here for the sake of comparison with Design 1. Y 1133 = μ + τ 1 + δ 1 +s 3 +b 13 +e 1133 Y 1244 = μ + τ 1 + δ 2 +s 4 +b 14 +e 1244 Y 1155 = μ + τ 1 + δ 1 +s 5 +b 15 +e 1155 Y 1266 = μ + τ 1 + δ 2 +s 6 +b 16 +e 1266 Y 1177 = μ + τ 1 + δ 1 +s 7 +b 17 +e 1177 Y 1288 = μ + τ 1 + δ 2 +s 8 +b 18 +e 1288 Y 2211= μ + τ 2 + δ 2 +s 1 +b 21 +e 2211 Y 2122 = μ + τ 2 + δ 1 +s 2 +b 22 +e 2122 Y 2233 = μ + τ 2 + δ 2 +s 3 +b 23 +e 2233 Y 2144 = μ + τ 2 + δ 1 +s 4 +b 24 +e 2144 Y 2255 = μ + τ 2 + δ 2 +s 5 +b 25 +e 2255 Y 2166 = μ + τ 2 + δ 1 +s 6 +b 26 +e 2166 Y 2277 = μ + τ 2 + δ 2 +s 7 +b 27 +e 2277 Y 2188 = μ + τ 2 + δ 1 +s 8 +b 28 +e 2188 6 Test of Interest ± H 0 : τ 1 = τ 2 vs. H A : τ 1 = τ 2 ± Equivalent to H 0 : τ 1 - τ 2 = 0 vs. H A : τ 1 - τ 2 = 0 ± We estimate τ 1 - τ 2 by Y 1 ...-Y 2 ... ± Y 1 ...-Y 2 ...= τ 1 - τ 2 + b 1 .- b 2 . + e 1 ... - e 2 ... 7 Design 1 Estimate of τ 1 - τ 2 Y 1 ...= μ + τ 1 + δ .+s.+b 1 .+e 1 ... Y 2 ...= μ + τ 2 + δ .+s.+b 2 .+e 2 ... Y 1111 = μ + τ 1 + δ 1 +s 1 +b 11 +e 1111 Y 1221 = μ + τ 1 + δ 2 +s 2 +b 11 +e 1221 Y 1132 = μ + τ 1 + δ 1 +s 3 +b 12 +e 1132 Y 1242 = μ + τ 1 + δ 2 +s 4 +b 12 +e 1242 Y 1153 = μ + τ 1 + δ 1 +s 5 +b 13 +e 1153 Y 1263 = μ + τ 1 + δ 2 +s 6 +b 13 +e 1263 Y 1174 = μ + τ 1 + δ 1 +s 7 +b 14 +e 1174 Y 1284 = μ + τ 1 + δ 2 +s 8 +b 14 +e 1284 Y 2211= μ + τ 2 + δ 2 +s 1 +b 21 +e 2211 Y 2121 = μ + τ 2 + δ 1 +s 2 +b 21 +e 2121 Y 2232 = μ + τ 2 + δ 2 +s 3 +b 22 +e 2232 Y 2142 = μ + τ 2 + δ 1 +s 4 +b 22 +e 2142 Y 2253 = μ + τ 2 + δ 2 +s 5 +b 23 +e 2253 Y 2163 = μ + τ 2 + δ 1 +s 6 +b 23 +e 2163 Y 2274 = μ + τ 2 + δ 2 +s 7 +b 24 +e 2274 Y 2184 = μ + τ 2 + δ 1 +s 8 +b 24 +e 2184 Average over 4 effects Y 1 ... - Y 2 ... = τ 1 - τ 2 + b 1 .- b 2 . + e 1 ... - e 2 ...
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 08/26/2009 for the course STAT 416 taught by Professor Peng,l during the Spring '08 term at Iowa State.

### Page1 / 13

12%20Competing%20Design%202_21_08 - Two Designs for...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online