2007 AJC Prelims Paper 1 solutions

2007 AJC Prelims Paper 1 solutions - 2007 H2 Mathematics...

This preview shows pages 1–4. Sign up to view the full content.

2007 H2 Mathematics Prelim Paper 1 solutions Solution 1. 1, () 3 2 4 x = 4 (2 -3 ) ( 1 - 2 x ) -3 = 2 34 1 1 3 .... 22 2 ! 2 xx ⎛⎞ −− −−+ + ⎜⎟ ⎝⎠ = 2 13 3 ... 24 4 ++ + for x < 2 Coefficient of x n = 2 1 ( ) [ ] ( ) 3 4 ... 2 1 !2 n n n ⎡⎤ + ⎢⎥ ⎣⎦ = 2 1 (-1) 2n ( ) ( ) n n n + + 2 1 2 1 2 1 = ( 2 1 2 1 2 + + + n n n ) 2. y = (cos –1 x ) 2 dx dy = 2 cos -1 x 2 1 1 x x dx dy x 1 2 cos 2 1 = ( ) y x dx dy x 4 cos 4 1 2 1 2 2 = = (proved) (i) Differentiating wrt x , dx dy dx dy x dx y d dx dy x 4 2 2 1 2 2 2 2 = 2 1 2 2 2 = dx dy x dx y d x When x = 0 , y = (cos –1 0 ) 2 = 4 2 π ; dx dy = - π ; 2 2 dx y d = 2 ; By Maclaurin’s Theorem , y = 4 2 - π x + x 2 + …. (ii) At x = 0, equation of tangent to the curve is y = 4 2 - π x 3a) a) 0 0 4 4 sin sin sin ( sin ) sin (sin ) x xdx x x dx x ππ =−+ ∫∫ 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Solution = 0 2 0 4 1c o s 2 o s 2 22 x x dx dx π −− −+ ∫∫ = 0 2 0 4 11 sin 2 sin 2 x xxx ⎡⎤ +− ⎢⎥ ⎣⎦ = 1 84 = + b) 2 1 dx x ud u =⇒ = 1 u 2 2 2 d( 1 xx 2 2 u ) x du u u =− 2 1 12 du u = = 1 sin 2 sin ( ) uc c 1 2 x = Alternately : 1 cos ( ) 2 c x + 4. (i) (ii) Direction vector of is 1 l 0 2 5 ⎛⎞ ⎜⎟ ⎝⎠ Equation of is , 1 l 20 35 r ⎛⎞ ⎛ ⎜⎟ ⎜ =− + λ− ⎝⎠ ⎝ % λ ∈ ± 4 13 3 OB = uuur 0 5 & 2 ON =−−λ Then 2 14 2 65 BN ON OB =−= λ 02 1 4 2 2 56 5 BN •− = ⇒− −λ•− 28 4 30 25 0 29 58 2 ⇒+ λ ++ λ = ⇒λ = ⇒λ=− 2 10 4 BN Equation of line BN : 41 13 5 32 r =+ λ %
3 Solution 5(i) (ii) cos 1 yx =− 1 1 cos 1 1c o s x y Since 11 x π −≤≤ , 1 o s x y :1 c o s , , 1 1 f xx x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 9

2007 AJC Prelims Paper 1 solutions - 2007 H2 Mathematics...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online