This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: T. Mitra, Fall 2006 Economics 617 Problem Set 1 [Due on Wednesday, September 6] 1. (a)Show, by using the definition of continuity, that the following func tions are continuous on R + . (i) f : R + → R + is defined by: f ( x ) = x for all x ≥ (ii) f : R + → R + is defined by: f ( x ) = 1 + x for all x ≥ (iii) f : R + → R + is defined by: f ( x ) = 1 / (1 + x ) for all x ≥ (iv) f : R + → R + is defined by: f ( x ) = x/ (1 + x ) for all x ≥ (b) Draw the graph of f in each case to illustrate its key qualitative features. 2. We say that a function f : R → R is increasing on R if whenever x, x ∈ R , and x > x, we have f ( x ) > f ( x ) . Suppose f : R → R is differentiable on R . (i) If f ( x ) > for all x ∈ R , use the Mean Value Theorem to show that f is increasing on R . (ii) If f is increasing on R , does it follow that f ( x ) > for all x ∈ R ? Explain. 3. Here is the statement of Taylor’s theorem (up to the second term) that was discussed in class. Let f be a function from...
View
Full
Document
This note was uploaded on 08/29/2009 for the course ECON 617 taught by Professor Staff during the Fall '08 term at Cornell.
 Fall '08
 STAFF
 Economics

Click to edit the document details