Spring2006Midterm

Spring2006Midterm - MATH 136 MIDTERM EXAM JUNE 5, 2006....

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 136 MIDTERM EXAM JUNE 5, 2006. TIME: 90 minutes NAME : SIGNATURE : I.D. : INSTRUCTOR (circle one): Khandekar Stebila There are 7 pages including this one. Attempt all questions. ANSWERS should be put IN the artistically designed BOXES when provided, but FULL MARKS ONLY IF PROPER EXPLANATION OR ALL DETAILS OF CALCULATION GIVEN AS WELL. NO AIDS OTHER THAN ‘PINK—TIE’ CAL- CULATOR. 9‘ (a) [5 marks] fine what it means to say that a linear! system of equatigns K _ v11: i9 6 R /? Jug hf/7/fn/ __A - 3 4t Afi ~52 (M o-iéll’ wily/5J4 /t‘hllf'§9(f}'e‘" 9,7,“ I, 71/2? Mam'x 7;, J ;4 I? nuanflfienf 170/ #m 7mm; éefi” J'th 3 -— I” 6 A76 (b)[15 marks] Find all numbers c1, 02, c3 so that 5% 4 ,' l/ ' \ 5 I133 - 21134 Cl " 7 ‘ 3:131 + 12122 + 1123 + 71114 C2 (171 + 41:2 + 21133 — 1114 H II II is a consistent system. is /’ / ‘/ Z \5 3 \Z \ 0 O i I l/ L A C: / 4 2 «/ C: N a o if {0 —3(,+c ,v o o o 0 $‘C. - 363 + (Z 0 o ( ’2 c, 0 o ( «7. c! ( G M; ij2[( {5! '3C; + (1 Da 2"; 71‘7 (c)[10 marks] Express the general solution of (133 — 2554 = 0 31171 + 12232 + $3 + 71L; = 0 £171 + 41112 + 2533 '— $4 = 0 in vector parametric form. / ’7’ 1 3 /2 l O A ( 7' fl 0 0 'F W ._, 0 O 0 0 Z 0 o l "’2 O 30 \ /—L H 7 / V 0 3 W N 0 0 (9 o 6 ) C) a ( ——1 7K, Hal-f 0‘71; +37CV :6 76,: J/lz «3251/ ac? 4—1217 so 763: wa,’ “ XL: 76"- 76“ 2‘1: 26‘! (d) [5 marks] Describe the set of all solutions to the system in part % geometrically (and briefly). \* 2.(a)[10 marks] Is the set ’ 1 1 3 % {(1H2H4ll 1 3 5 linearly independent or linearly dependent? Explain. H3 1/3 /z‘/~otx I3I O’L'L \OEQ c we 7’0 7% J 7‘» 74M / Wgh/‘fl/f: r a W C’V ‘Jfl (SleélarlfiShojt/lfat I? 4‘! #ll Vflfi’5lef é/(fl'fe ‘ 17 5065/1? Aave d/vz‘vf 17» €414 1 1 3 ll/MMA zlaqtge I? (Zr/u?“ - SPAN{(1),(2 ,‘4 meta/2474.917 X i 1 3 5 all oflR3. 7? "‘ is not - W {7 5 MN} flI/f/g/r 7% /z»z l/M/g » // Z é k“) a; ‘T/ flh(fir (07145)“)4 233); M W ‘ 0 77/ wt de/hm/ ,4 Mfl [a] ’ 7.349“ ‘flu iquZfl/é/ 27 I‘Lflflflf/mlq 7L (4 W! ,? [Lil 4, [ll/I 7L /21 (k “Win/PI! Lfi/qm h t (4* ,‘7 [kfir 74A,”; Mgr-W71.) 7’46 row WMWS 19w} 4v M 7m WMMM, W I? (\x V) WW“ W W M/ 64406 Me Mama/M éa/MW' . .4, F -, all 7/ 1... mn‘ztm/Z, 3.(a)[10 marks] Prove the following identity in R3 : C(v + w) cv+cw. That is, using any facts about numbers, but not using any theorems from the course, show that the equality holds for all real numbers 0 and all vectors V and w in (113.. [This holds more‘generally in R”, but restricting to [R3 will simplify the notation you must introduce for vectors] Give a short justification for each “=” sign in your proof. 9 2 c (v + w) — W = c( (WW, , Vzwtvvgwg) /WW4;6 75W : ( C(Vl+wt) 7 “With/2)., Cit/MW» psi/f/[éf’ftgf ( 6C VPk CW3.) C .éa C W5) flfljfgjfifééz¢ry7 fled! :; (cvmvcvucvfl.tflm/HWZ’CNZ] // M7. \l urge-7s”; O : diam]? + ((wawws) igjit/x T: C V + CW // figfdf‘ Viz/75r- £7 Vwfip (b)[5 marks] Assuming associativity of vector addition (so that we can write the two sums below without extra brackets), use (a) above to deduce that c(u+v+w) = cu+cv+cw is also an identity in 1R3. £177" 77:7«Lfi ,flen we Azw /c(;+tj+5;): 5/5229 ‘ “A754 Axg ééwv Zflvfl/f 5527» C5; j #1, 70:) mm: {Am-M am a r out“; “Wm/*5?) > - C" I7 '> /% 35%) Mng- ~ (4+C—FCW ' mm {\W-’ ‘ vH/Lé /Mh//é 54%. W71 WKy/fl/flqu 71, . “W 9 ‘4 14”“th 3c f w . géflé L‘ > 6 ~12. «9 7 I? “g g {? r3 3’ 4 {Si 2 ,z / 0 l 9/? '17 y «I / Io «1 if 7 D LI 0 -2 —1 0 i 3 IO 0 ’1 ‘0 O O P { l7 .2]! OJAZ» ‘ 'Z. l0 227 ,0 X 5. (a) [8 marks] Explain why the SYStem ( ('J l) flog/“7' o 0 x n matrix with k < n . must have non—trivial solutions when A is fill/’7 {Mfr/'61 74” 04475;... “Hue “iv‘iwad {AWAXDON {rag W757, maflfx ,. )6 MW IMF]: (7 Van/1 4.4/8 (4 WW7)". 14 {T AX”? 4'7/ £<hl 7%”, f]- (flr’l/ fiat/Z M [/W/f é!(4/fl7€ f)! an? Act g 2 WI f2 WUCA WW I‘"’%b“‘r M43“ z" fihfi/d ’45; .55 A“ 741% MW/Cf, m1 fa 41f {‘nfim‘flflf Ami/1y mflvw/‘flu/ fi/‘yWI- I (b)[7 marks] Using part (a) if you wish, deduce that if n > k then the indexed set of vectors {v17v21' ' ' )Vn)} in EU“ is linearly dependent. /< 4"; mile/a! f&/ x/ 1435791”; iv, ,IQ, ,Vk} m K 7‘; eymvfl/éxyy 14v [[6, am 42 ask/«wed an...) a W mofr/‘k ‘ V U” 'k \I‘“ ng )UI ‘. 4 . \VKE 1? Va“ ~ “ z 7. ‘ .H U‘“ v ’l (l 3, i- ‘. 1” yin V “cm \lgu. ' “4* W ILA/019M flg w7hiwz‘r/ Mfg/(74f 7%»! W 74/032 A an (a) MM MM” £41m”? 7‘p #74 Jr Mffiflfi/J AZW‘ 7» m w? W WM/ 7%»% 214.? M4“th d7: flaw Mia/wag /l( 2%; #6 WM 5.1quij W/~x 4/», )5’1‘2. [aVI’zZ/y‘va/zfi 74p fie i/LN‘ Hsz W [11’ w M» Ankh/£19 446‘”. ...
View Full Document

This note was uploaded on 09/04/2009 for the course MATH 136 taught by Professor All during the Winter '08 term at Waterloo.

Page1 / 7

Spring2006Midterm - MATH 136 MIDTERM EXAM JUNE 5, 2006....

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online