M138.W09.TT2.Info

M138.W09.TT2.Info - MATH 138 INFORMATION FOR TERM TEST 2...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 138 INFORMATION FOR TERM TEST 2 Winter 2009 ______________________________————————————— TEST 2 will be held IVIonday — March 23 — 7:00-8:45 p.m. (see locations below) NOTE: Term Test 2 will cover problems 6-11 of Assignment 5, (curves in R2), plus all of Assignments 6 & T. & 8 (except for #6.? on Assignment 8). Here’s a list of what you need to know. TO HELP You REVIEW: 0 VECTOR FUNCTIONS: Thinking of x = F(t) = (T(t),y(t)) as a curve in R2, you will need to be able to either eliminate t to get an equation in :L' and y, OR, (ll) sketch component graphs or specific points and tangents, and combine that information in order to sketch the curve in R2 and assign a direction for increasing 1. Interpreting x = F(t) as the path of a particle moving in R2, know how to find its velocity v and acceleration a, and find the distance travelled (i.e., how to develop an integral for arc length L, starting from the element AL, as a Rieman integral, or as the integral of the speed of the particle). Be able to find the vector equation of the tangent line to x = F(t) at t = to. and interpret it as the linear approximation £,o(t) to F(t) near it = to, and as the line followed if the particle leaves its path at to. o SEQUENCES: Know the formal definition of lim l‘" = p; the definition Of ’monotone’; the state- _—— TI—‘m merits of the limit theorems (LSR, LPR, LQR, LCR), and of the I\I‘Ionot0nic Sequence Theorem. Finding the limit of a sequence using the definition is an essential skill (See Examples 1-5, pages 60—64 of Course Notes), also using Induction and the Monotonic Sequence Theorem (Exs. 1-2. pages 73-75), or using Limit Theorems. You can also use the idea that lim f (n) = 1lingo f for n—'OO , _ _ In n . 111T _ _ continuous f (e.g. hm ——2- = lim Know the limits on p. 68 of Course Notes. 11—00 71, 32—900 :1; . i ‘ ' o LIMIT OF A FUNCTION: Know the formal definition -(5 — 6) of hm f(:r) = L, and how to use 17—“) this definition to prove a limit. 0 SERIES: Know the definition of Sn, convergence, divergence, absolute convergence, conditional convergence, and the statement of all theorems (CST, n‘h‘ TT, CT, LCT, IT, ACT, AST, RT) and any corollaries. [Page 2 herein provides a summary for you to complete. as an aid to learning 1 these] You may use WITHOUT PROOF that 2 E converges for p > 1. and GST. ALWAYS check that nlim |a.,,| = 0, sinCe otherwise Zen diverges. The key to series is to do LOTS of #00 examples, so you can learn what test is likely to work. Suggestion: Read page 3 attached, and text p721, and then try text page 722 — #1, 3, 5, 7-15, 17—29. TEST ROOMS: You M T 0 To THE ORRECT - OM — THERE ARE NO EXTRA SEATS! (Last Names) I (Last N E117 MC 1085 (A-Lin) 4020 (M) 001 P. Roh 2017 (Lin-S) 005 1). W'olczuk MC 4021 0'er 2054 (Tm MC 4041 (R:V\»ill) 4042 (iv - (A-Ko) , ( 002 J. Sham 2035 (Ker-Shiv) L. Wang 112 (Li—Tim) (ShO-Z) (Tran-Z) B. Marshman 007 211 (M—Z) RCH 301 004 M. La Croix 302 (L—T) M. Scott RCH 306 (A-Z) 307 STJ 2009. 3014 (TBA) | I). Zhou RCH 305 (A-Z) MfiTH V69: Summagy cg Semes 0F COMSTAQTS 2Q“, Deghnih'ons a . 4. “Tch 90.:1’flhu95wm 5,4 :8 m wow “Evan L5 2. an is o. cmwwgem‘k wine {g '5. Za“ {s o. AWQM" mm ig ;. 4. Zn“ is a. %e.om€\.n(c. WILD» 1% Li: m 8mm 5. A“ mammary“ mm; mm 8mm 4,. Zen Como-QO O—bSOW Kg '1 20.“ mengm CWOL‘LTL‘O'Wa—Qilj (8 Weorems 1. GST CoroHoxj: ’2. 'n‘kTT a. CT 4». IT QoroHOmy: 5. AST CoroHom): 6:. ACT 1. RT MATH \38 - 5mm Swami Cctd.) P°'°AQB*3 Z Decide what Test To wse '. mu... MM. Co «no Ame. um...» EdoMJ Wane. Acme MM To 99.06% 1. We kmow Z—‘fi? (Leno. Src'LF>‘ sundown/mam 841 95. l. TM .PAOUth-b anw g01 compm cwwhm 20.1w (5 0L haf‘h'o 5—3 PbLgdnxo—ynéaflc m POW #8 h, nanscéOucfix "‘n __ h L, “Dams. (98., 1‘34“ Os“,n —— ms“ m my $61 Ja‘nefinLSQ Ci ' ' , \/ -—— an 71) COMPMkSOn T; iii—t ts sufiwj z fini-| rv gm 8t 2. SMLXMH, 2.0.x“ who. 9: Mu WA 01.11.). gm ww- So, gm “Mpg-t. 0- W ' M Z fill; he“) (4” =JZ—‘L3KYSQY Mo&%ufl'fng o. CmpMo-n 03 EMMA +1: ’Pncuwuaalé‘s.®_flyg 3. Fan. alflnnaIL/nca Bundle ZC"\)“PV. , (final, Sm+ Save-550MB. unmet CT, 1T,mRT -, M)Lg 2p“ WW) 290%.)" amnu. abs, 48"“ 9% 2P» OLWQAD ) M Lama AST To duck? CananiLé—vmfl Cami). 4- 8mm: gown a“ Centan Sad—o1.th Walla Mopb-ncLTo RT. (395-, Z BLL'T mm; #119» an QAcd’io r3 pom-em: (Claim 1. wb0m3 , tuxms M2 DAL)??? , mm 03.14.50.165 LUII'HA. 6. Check. ‘Hna’r xlnuymsafi =0,- o’rthwise 24“ Megan de NWT. 6- Fan 0; mi» 20.“ wewu. am=§én3 amd £60 looks {GOLtS'f-o 0661534031, ubQ'ET Ce.%.>Ze/_V_;\_T_\§) 'TLJE.‘ ) Rema{no\u\ /Ef‘ror Esh'matas '. MWTW wage; W To me. 1. GST : 9% 20.“ (a a, G6. , 1Mn Lue- mewm WM UXO-L'Wj i u+‘\ — 520%“ = O.§CL'X+O.'X1+-.. +O.’XN $Q \= ax \ n=o \__..———f‘——_’ + RN ’ N \—X I m— s” = Mma'mdu =$> mains“ FWMHS u“- QJ‘Q ammmg To @625. LU-D. cam aloobowd Th. WM. 199:. Z muffle?» 5L3 fompmfs to :‘%3m 3 so w W” “‘1’ sues: %*%@*“*%(% ,fi‘m MM is ' " 3L ’1 It ‘ M ‘3 S5\‘ f"'\< 33—h g—a‘... -; %—%’3= 3.7%.)‘(uppubo 2- $8 2%ch conu-uxggg New ym rspoém,c\‘s»+www‘3 (N! . ‘3 " . . U SQ) a“) ‘“"'°“&.z.a-“N?§.o.¢~s> TM 9.1mm: 3-3.; = 4.4+: + Qua-2 " “Hf-3+ Hm. °° N N“ H“ m at ‘7‘ A f—GOOLM . 3. AST‘. Fm mac-nougaifi‘ mma w ZG-Ohen : 134M = \me‘ PM-t-‘L-PN'P3 ----\ < PMH , flamm <\S"“S”""‘ \ . . . I ancafld Crews \5 TM ~10.me o& M men. bomds '\’o we“) ...
View Full Document

Page1 / 3

M138.W09.TT2.Info - MATH 138 INFORMATION FOR TERM TEST 2...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online