Lecture 10 (2009)

Lecture 10 (2009) - Change to Office Hours this Friday and...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Change to Office Hours this Friday and next Monday Tomorrow (Abel): 8:30 10:30 am Monday (Katrina): Cancelled (05/04) Lecture 10 Proton Gradient-dependent ATP Synthesis "Oxidative Phosphorylation" "Photo-Phosphorylation" Photo Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane 4H+ + + + G3P DHAP FADH2 4H+ + + + + 2H+ Intermembrane space + + + + + + + + + + + + + + Cyt c I II - - - - - Q III - - - F0 IV - - - - - - - FADH2 Succinate Fumarate F1 FADH2 NADH + H+ NAD+ TCA-Cycle O2 + 2H+ H2O ADP + Pi ATP H+ Fatty acid degradation (-oxidation) Matrix p. 55 Mechanism of ATP Synthase p. 57 p. 57 ADP + Pi ADP + Pi H+ (P) ADP + Pi H+ (P) ATP H+ (P) ATP L O T L O T L L O T H+ (N) O H+ (N) T H+ (N) Proton movement through FO causes rotation of subunit and conformational changes of subunits p. 57 Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane 4H+ + + + G3P DHAP FADH2 4H+ + + + + 2H+ Intermembrane space + + + + + + + + + + + + + + Cyt c I II - - - - - Q III - - - F0 IV - - - - - - - FADH2 Succinate Fumarate F1 FADH2 NADH + H+ NAD+ TCA-Cycle O2 + 2H+ H2O ADP + Pi ATP H+ Fatty acid degradation (-oxidation) Matrix p. 55 Bioenergetics of the ETC and ATP Synthesis Do the numbers fit? (yes, more or less...) 1. What is Go' of NADH oxidation? NADH + H+ + 0.5 O2 NAD+ + H2O Eo' = Eo'ox Eo'red Eo' = 0.82 V (0.32 V) Eo' = 1.14 V Go' = nFEo' Go' = 220 kJ mol-1 2. What is G of H+ transport against H+ gradient? Experimental data: pH = 0.75 and = 150 mV G = Go' + RT ln [H+]P / [H+]N + ZF G = RT ln [H+]P / [H+]N + ZF G = 2.303 RT log [H+]P / [H+]N + ZF G = 2.303 RT (log [H+]P log[H+]N) + ZF G = 2.303 RT (pHN pHP) + ZF G = 2.303 RT pH + ZF G = 2.303 RT 0.75 + ZF 0.15 V G = ~ + 20 kJ per mol H+ Z = charge of H+ (+1) pH = log [H+] Go' = 0 ln = 2.303 log NADH + H+ + 0.5 O2 ETC NAD+ + H2O 10 H+P 10 H+N 1. Go' of NADH oxidation Go' = 220 kJ mol-1 Energy gained and coupled to proton transport 2. G of H+ transport against electro-chemical gradient G = ~ + 20 kJ per mol H+ Energy gained is sufficient to pump 10 protons! G = ~ + 200 kJ per 10 mol H+ NADH + H+ + 0.5 O2 ETC NAD+ + H2O 10 H+P 10 H+P FoF1 10 H+N 10 H+N ATP + H2O ADP + Pi 3. How many ATP are be produced per NADH? EMF(NADH) ( 220 kJmol-1) PMF(10 Protons) ( 200 kJmol-1) ? ATP 6-7 ATP 4 ATP 2-3 ATP Go'(ATP Synthesis) = 30.5 kJ mol-1 G(ATP Synthesis) ~ 50 kJ mol-1 In reality: Inner Membrane Transporters "Tap into" the PMF Intermembrane Space H+ H+ H+ H+ H+ H+ Pyr H+ H+ Pi ADP3++++ ----- ATP4++++ ----ATP4- H+ OHOH- Pyr OHOH- H+ OH- Pi OHOH- OH- ADP3- Mitochondrial Matrix 4. How many ATP are produced per FADH2? No complex I (only complex II-IV) FADH2 + 0.5 O2 ETC FAD + H2O 6 H +P 6 H +P FoF1 6 H +N 6 H +N ATP + H2O ADP + Pi Eo' = Eo'ox Eo'red = 0.82 V (+0.06 V) = 0.76 V Go' = nFEo' = 147 kJ mol-1 EMF(FADH) ( 140 kJmol-1) PMF(6 Protons) ( 120 kJmol-1) ~2 ATP Model of the Electron Transport Chain (ETC) Outer Mitochondrial Membrane 4H+ + + + G3P DHAP FADH2 4H+ + + + + 2H+ Intermembrane space + + + + + + + + + + + + + + Cyt c I II - - - - - Q III - - - F0 IV - - - - - - - FADH2 Succinate Fumarate F1 FADH2 NADH + H+ NAD+ O2 + 2H+ H2O ADP + Pi ATP H+ Amytal, Rotenone Antimycin A Cyanide Oligomycin p. 52 O2 Consumption No Substrate, but ADP + Pi ATP Production + Succinate + Cyanide Inhibition of Complex IV Model of the Electron Transport Chain (ETC) Outer Mitochondrial Membrane 4H+ + + + G3P DHAP FADH2 4H+ + + + + 2H+ Intermembrane space + + + + + + + + + + + + + + Cyt c II - - - - FADH2 Succinate Fumarate III - - - Cy an i I Q F0 - - - - - - - IV F1 de NADH + H+ NAD+ FADH2 O2 + 2H+ H2O ADP + Pi ATP H+ Amytal, Rotenone Antimycin A Oligomycin p. 52 O2 Succinate, but no (ADP, Pi) Inhibition of Fo-F1 ATPase + (ADP, Pi) + Oligomycin ATP "Acceptor Control" [ADP] Model of the Electron Transport Chain (ETC) Outer Mitochondrial Membrane 4H+ + + + G3P DHAP FADH2 4H+ + + + + 2H+ Intermembrane space + + + + + + + + + + in yc Fgom i0 Ol + + + + Cyt c I II - - - - - Q III - - - IV - - - - FADH2 Succinate Fumarate - - - - F1 FADH2 NADH + H+ NAD+ O2 + 2H+ H2O ADP + Pi ATP H+ Amytal, Rotenone Antimycin A Cyanide p. 52 O2 Succinate, but no (ADP, Pi) Inhibition of Fo-F1 ATPase + (ADP, Pi) + Oligomycin + DNP ATP Uncoupling of PMF and ATP synthesis "Acceptor Control" [ADP] Dinitrophenol (DNP) O- "Uncouplers" (collapse of H+ gradient) - O O N+ O N+ HO 4H+ + + + + + + + G3P DHAP FADH2 Thermogenin (Proton Channel) 4H+ 2H+ Cyt c + + + + + + + + + + + + + + I II - - - - - Q III - - - F0 IV - - - - - - - FADH2 Succinate Fumarate F1 FADH2 NADH + H+ NAD+ O2 + 2H+ H2O ADP + Pi ATP H+ Amytal, Rotenone Antimycin A Cyanide Oligomycin Feedback Control ("Acceptor Control") Glucose PFK-1 PK Glycogen Glucose-6-P Pyruvate PDH Acetyl-CoA CS IDH KGA-DH NADH ADP ETC ATP Activation Lactate Inhibition Feedback Control by NADH Glucose Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH X ETC ATP PK PDH CS IDH KGA-DH Lactate Allosteric Control of the TCA Cycle Pyruvate Pyr Carboxylase (+) Acetyl-CoA Acetyl- PDH Acetyl-CoA (+) AMP, NAD+, CoA (-) ATP, NADH, Acetyl-CoA Acetyl- (+) Activation (-) Inhibition (+) ADP (-) ATP, NADH, Citrate, Succinyl-CoA Succinyl- CS Oxalaoacetate Citrate Malate Isocitrate IDH Fumarate -Ketoglutarate (+) ADP, NAD+ (-) ATP, NADH -KGA Succinyl-CoA (+) AMP (-) ATP, NADH, Succinyl-CoA Succinyl- p. 49 ATP Yield of Respiration Glucose 2 Pyruvate 2 ATP (5%, anaerobic) 2 NADH 2+6 2 Pyruvate 2 Acetyl-CoA + 2 CO2 4 CO2 2 ATP 2 NADH 6 2 Acetyl-CoA 6 NADH 2 FADH2 38 ATP 2 + 18 4 36 ATP (if glycerol-3-P shuttle) 1 NADH = 3 ATP 1 FADH2 = 2 ATP (~65% efficiency, G of Glc Oxidation ATP) Proton Gradient-dependent ATP Synthesis by Photo-phosphorylation Plants and Photosynthetic Bacteria LIGHT O2 ATP NADPH CO2 + H2O ATP NADH Photosynthesis Respiration NADP+ ADP + Pi H2O Reduced Organic Compounds NAD+ ADP + Pi Autotrophic Metabolism Heterotrophic Metabolism p. 58 Plants and Photosynthetic Bacteria LIGHT O2 ATP NADPH CO2 + H2O ATP NADH Photosynthesis Respiration NADP+ ADP + Pi H2O Light Reactions CO2 Fixation Reduced Organic Compounds NAD+ ADP + Pi Heterotrophic Metabolism p. 58 Eo' - 1.0 V Chl* e- CO2 E ATP NADP+ NADPH NADH NAD+ "Food" (Reduced Carbon) - 0.3 V L I G H T Chlo E ATP O2 H2O + 1.0 V Chl+ p. 58 ...
View Full Document

This note was uploaded on 09/06/2009 for the course BIS 103 taught by Professor Abel during the Spring '08 term at UC Davis.

Ask a homework question - tutors are online