Lecture 11 (2009)

Lecture 11 (2009) - Lecture 11 Finish Photo-phosphorylation...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Lecture 11 Finish Photo-phosphorylation (ATP) Photo Gluconeogenesis (Synthesis of glucose) neo Proton Gradient-dependent ATP Synthesis (1. "Oxidative" Phosphorylation) NADH -0.32V H+ (out) ADPATP +0.82V H+ (in) O2H2O H+ (in) Electron Motive Force (EMF) Proton Motive Force (PMF) ATP Synthesis Proton Gradient-dependent ATP Synthesis (2. "Photo" Phosphorylation) Chl*eL -1.0V I G H T H+ (in) H+ (out) ADPATP -0.32V NADP+NADPH H+ (in) Electron Motive Force (EMF) Proton Motive Force (PMF) ATP Synthesis Oxidative Phosphorylation (per mole O2) 2NAD--H + 2H+ + O2 ETC 2NAD+ + 2H2O 20 H+P 20 H+P FoF1 20 H+N 20 H+N 6ATP + 6H2O 6ADP + 6Pi Photo-phosphorylation (per mole O2) 8 Photons (~1,400-2,400 kJ) 2H2O + 2NADP+ PS 2NADP--H + 2H+ + O2 12 H+out 12 H+out FoF1 12 H+in 12 H+in 3ATP + 3H2O 3ADP + 3Pi 3ATP + 2NADPH + CO2 + H2O 1/3 Triose-P + 3ADP + 2Pi + 2NADP+ Carbon Assimilation (CO2 Fixation) "Light Reactions" of Photosynthesis Splitting of H2O (generation of O2) Production of NADPH and ATP Chloroplast Algae Chloroplast Structure Thylakoid Lumen Thylakoid Stacks Outer/Inner membrane (Grana) (space enclosed by thylakoid membrane) Stroma Photosynthetic Pigments Blue Green Yellow Red 680 700 p. 60 Photosynthetic Pigments Chlorophylls R1 H3C I II -Carotene R2 CH3 CH3 CH3 CH3 III CH3 CH3 CH3 CH3 CH3 CH3 R3 N Mg N N CH3 N H3C H IV Phycoerythrin Protein H CH2 CH2 H C O C O O OR4 CH3 O CH3 CH3S HOOC COOH CH3 CH3 CH3 O N N N N O R1, R2, R3 (short-chain substituents, e.g., -CH3, -CH2-CH3) R4 (long-chain substituents, e.g., phytyl or geranylgeranyl side chain [C20]) p. 60 Generation of ATP and NADPH in Photosynthesis pH 8-8.5 Stroma 4 Photons 4H+ Thylakoid Membrane ADP + Pi 4 Photons 4H+ 4Fdred 2NADP+ ATP 2NADPH CF1 H+ PS II 2PQH2 2PQ Cyt b6f 4PCred 4PCox PS I CF0 OEC 2H2O O2 + 4H+ 8H+ H+ Lumen pH 5-5.5 p. 61 The "Z" Scheme of Photosynthetic Electron Transport E'o (V) -1.5 P700* PSI PSII -1.0 P680* -0.5 PQA PQB Ph a Ao AI Fx FA FB Fd Fd-NADP+ Oxidoreductase 0 PQPool PC P700 2H+ 2NADP+ 2 NADPH +0.5 2 H20 OEC +1.0 Cyt bf complex Z 4 eP680 8H+ +1.5 LIGHT 4 Photons O2 + 4H+ LIGHT 4 Photons p. 61 Carbohydrate Anabolism (Synthesis) The "Powertrain" of Human Metabolism (Overview) CARBOHYDRATES PROTEINS LIPIDS Glucose Amino acids Fatty acids Other Carbohydrates Oxaloacetate Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glycolysis PDH TCA Cycle ETC Lactate Ketone bodies Ribose-5-P NADPH NADH Cholesterol p. 21 The "Powertrain" of Human Metabolism (Overview) CARBOHYDRATES PROTEINS LIPIDS Glucose Amino acids Fatty acids Other Carbohydrates Oxaloacetate GNG Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Lactate Ketone bodies Ribose-5-P NADPH NADH Cholesterol p. 21 Gluconeogenesis Synthesis of glucose from non-hexose precursors Lactate Pyruvate Glycerol Certain amino acids (glucogenic) Acetate (microorganisms and plants only; NOT in animals and humans) Some Situations for Gluconeogenesis: Glucose Glucose Erythrocytes Oxaloacetate Anaerobic Glycolysis Glucose-6-P Pyruvate Glucose-6-P GNG Pyruvate Lactate Lactate Erythrocytes (RBC) Liver Some Situations for Gluconeogenesis: Exercise/Work Glucose O2 Supply (Cardiovascular System) Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glycolysis PDH TCA Cycle ETC Some Situations for Gluconeogenesis: Exercise/Work O2 Supply Glucose (Cardiovascular System) Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glycolysis PDH TCA Cycle ETC Some Situations for Gluconeogenesis: Exercise/Work Google Man I Glucose O2 Supply (Cardiovascular System) Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glycolysis PDH TCA Cycle ETC Some Situations for Gluconeogenesis: Exercise/Work Google Man I Glucose O2 Supply (Cardiovascular System) Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glycolysis Additional ATP by Anaerobic Glycolysis PDH TCA Cycle ETC Liver Lactate After Heavy Exercise: Recycling of Lactate ("Oxygen Debt") Blood Glucose Glucose Oxaloacetate Anaerobic Glycolysis Glucose-6-P Pyruvate Cori Cycle Glucose-6-P GNG Pyruvate Lactate Lactate Blood Skeletal Muscles Liver High ATP requirement is met by respiration Some Situations for Gluconeogenesis: Starvation Endogenous Protein (Skeletal Muscle) Brain PROTEINS LIPIDS Glucose Amino acids Fatty acids Other Carbohydrates Oxaloacetate GNG Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP PET (Positron Emission Tomography) scans visualize metabolic activity (glucose consumption) Tumors Some Situations for Gluconeogenesis: Protein-rich Diet PROTEINS PROTEINS PROTEINS Blood LIPIDS Glucose Amino acids Fatty acids Other Carbohydrates Oxaloacetate GNG Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Fates of Pyruvate in Anaerobic Glycolysis (Fermentation) A. Lactic Acid Fermentation (reverse: gluconeogenesis in liver) -O C -O C O O 11 O HO H CH3 NADH + H+ NAD+ CH3 Pyruvate Gluconeogenesis Lactate (from Blood) p. 30 Glycolysis CHO H HO H H OH H HO CHO OH CH2OH O 1 CH2OPO322 O 1 CH2OPO322 O DHAP 1 H OH OH CH2OH 2 H OH OH CH2OPO32HO H H H OH OH CH2OPO32- 3 HO 3 4 5 6 4 H OH OH CH2OPO32H 3 CH2OH + 4 HC 5 O ATP ADP H H ATP ADP H H 5 OH G-3-P Haworth projection Ring form GLC GLC-6-P F-6-P F-1,6-bisP 6 CH OPO 22 3 CH2OH H OH OH H OH O H OH H CH2OPO32O OH H OH OH O3POH2C H O OH CH2OH O3POH2C H O OH CH2OPO32- HPO42OH 1 ATP OH H 2 H OH H OH 3 ATP ADP H OH H 6 NAD+ NADH + H+ ADP 2 Molecules -O - C O O C O -O -O OPO32C O C O 10 O OPO32CH2 9 H OPO32- 8 H OH CH2OPO32- 7 H 3,4 2,5 1,6 C O OH CH3 ATP ADP H2O CH2OH ATP ADP CH2OPO32- PYR PEP 2-PGA 3-PGA 1,3 bisPGA p. 25 Gluconeogenesis CHO H HO H H OH H HO CHO OH CH2OH O 1 CH2OPO322 O 1 CH2OPO322 O DHAP 1 H OH OH CH2OH 2 H OH OH CH2OPO32HO H H H OH OH CH2OPO32- 3 HO 3 4 5 6 4 H OH OH CH2OPO32H 3 CH2OH + 4 HC 5 O ATP ADP H H ATP ADP H H 5 Haworth projection Ring form GLC ? H OH OH OH H ? O3POH2C OH G-3-P GLC-6-P F-6-P F-1,6-bisP 6 CH OPO 22 3 CH2OH H OH OH H OH O H CH2OPO32O H OH OH O3POH2C H O OH CH2OH O H OH CH2OPO32- HPO42OH 1 ATP 2 H OH H OH 3 ATP ADP H OH H 6 NAD+ NADH + H+ ADP 2 Molecules -O - C O O C O -O -O OPO32C O C O 10 O OPO32CH2 9 H OPO32- 8 H OH CH2OPO32- 7 H 3,4 2,5 1,6 C O OH CH3 ATP ? ADP H2O CH2OH ATP ADP CH2OPO32- PYR PEP 2-PGA 3-PGA 1,3 bisPGA p. 25 Gluconeogenesis: CHO H HO H H OH H HO By-pass reactions and enzymes CHO OH CH2OH O 1 CH2OPO322 O 1 CH2OPO322 O DHAP 1 H OH OH CH2OH 2 H OH OH CH2OPO32HO H H H OH OH CH2OPO32- 3 HO 3 4 5 6 4 H OH OH CH2OPO32H 3 CH2OH + 4 HC 5 O ATP ADP H H ATP ADP H H 5 OH G-3-P Haworth projection Ring form GLC GLC-6-P F-6-P F-1,6-bisP 6 CH OPO 22 3 3. By-pass CH2OH H OH OH H OH O H OH H CH2OPO32O OH 2. By-pass O3POH2C H O OH OH OH H CH2OH O3POH2C H O OH OH OH H CH2OPO32- OH H OH HPO42- 1 ATP OH H 2 H 3 ATP ADP H 6 NAD+ NADH + H+ ADP 2 Molecules -O - C O O C O -O -O OPO32C O C O 10 O OPO32CH2 9 H OPO32- 8 H OH CH2OPO32- 7 H 3,4 2,5 1,6 C O OH CH3 ATP ADP H2O CH2OH ATP ADP CH2OPO32- PYR PEP 2-PGA 3-PGA 1,3 bisPGA 1. By-pass p. 25 First By-pass Reaction (see Anaplerotic Reactions) -O -O C O H14CO3- ATP ADP + HPO42- C C O O O CH3 Pyruvate Carboxylase (biotin-dependent, only in mitochondria of animals) CH2 14COO- Pyruvate Oxaloacetate Pyr Kinase Does not work Pyr Pyruvate Carboxylase +ATP CO2 PEP +GTP OAA CO2 p. 47 First By-pass Reaction (see Anaplerotic Reactions) -O - C C CH2 14 O GTP GDP + 14 CO2 O C O O OPO32- COO- PEP Carboxykinase (PEPCK) (localization varies among species: only mitochondrial, only cytosolic, or both) CH2 OAA PEP Pyr Kinase Does not work Pyr PEP PEP Carboxykinase CO2 +ATP CO2 +GTP OAA p. 47 First By-pass Reaction (Summary) Go' = +32 kJ mol-1 G = + 23 kJ mol-1 Pyr Kinase Does not work Pyr Pyruvate Carboxylase +ATP CO2 PEP PEP Carboxykinase +GTP OAA Go' = 0.9 kJ mol-1 G = - 25 kJ mol-1 CO2 Gluconeogenesis: CHO H HO H H OH H HO By-pass reactions and enzymes CHO OH CH2OH O 1 CH2OPO322 O 1 CH2OPO322 O DHAP 1 H OH OH CH2OH 2 H OH OH CH2OPO32HO H H H OH OH CH2OPO32- 3 HO 3 4 5 6 4 H OH OH CH2OPO32H 3 CH2OH + 4 HC 5 O ATP ADP H H ATP ADP H H 5 OH G-3-P Haworth projection Ring form GLC GLC-6-P F-6-P F-1,6-bisP 6 CH OPO 22 3 3. By-pass CH2OH H OH OH H OH O H OH H CH2OPO32O OH 2. By-pass O3POH2C H O OH OH OH H CH2OH O3POH2C H O OH OH OH H CH2OPO32- OH H OH HPO42- 1 ATP OH H 2 H 3 ATP ADP H 6 NAD+ NADH + H+ ADP 2 Molecules -O - C O O C O -O -O OPO32C O C O 10 O OPO32CH2 9 H OPO32- 8 H OH CH2OPO32- 7 H 3,4 2,5 1,6 C O OH CH3 ATP ADP H2O CH2OH ATP ADP CH2OPO32- PYR PEP 2-PGA 3-PGA 1,3 bisPGA 1. By-pass p. 25 Second and Third By-pass Reaction ATP Hexokinase Glucose Glc-6-P Fru-6-P Fru-1,6-BP Pi Glc-6-P Phosphatase ADP H 20 ATP PFK Pi Fru-1,6-BP Phosphatase ADP H 20 GA-3-P DHAP p. 62 Third By-pass Reaction ATP Hexokinase Glucose Glc-6-P Pi Glc-6-P Phosphatase ADP H 20 Glc-6-P Phosphatase is only present in organs/tissues that contribute to the blood glucose homeostasis Liver Kidneys NOT in muscles or brain Glc-6-P dephosphorylation occurs in the endoplasmic reticulum (ER) p. 62 Glycolysis (left side) ATP Glucose Glc-6-P Fru-6-P Fru-1,6-BP Pi Gluconeogenesis ADP H20 ATP Pi ADP H20 GA-3-P NAD+ NADH ADP ATP DHAP NAD+ NADH Different "versions" depending on starting molecules: Lactate Glucogenic amino acids 1,3-bis PGA 3-PGA 2-PGA PEP ADP ATP GDP + CO2 GTP ADP ATP OAA NADH NAD+ Malate Malate or Lactate Pyr CO2 GDP GTP NAD+ NADH PEP OAA ADP ATP + CO2 Ala Ala Pyr Mitochondrion Pyr Lactate p. 62 A. Recycling and Conversion of Lactate into Glucose Blood Glucose Glucose Oxaloacetate Cori Cycle Glucose-6-P Pyruvate Glucose-6-P GNG Pyruvate Anaerobic Glycolysis Lactate Lactate Blood Skeletal Muscles, Erythrocytes Liver Glucose Blood Cytosol Lactate Lactate Glucose Glc-6-P Phosphatase NAD+ Mitochondria NADH NAD+ F1,6BP PEP Pyr Pyr G6P F6P Fru-1,6-BP Phosphatase OAA Glycolysis-specific PEP Liver Gluconeogenesis-specific Shared (reversible) reactions 0.05% = 0.05 g/100 ml or 0.5 g/L = 0.01 M = 10 mM Molecular weight of ethanol: 46 g/mole (~50) Glucose ~10 mM (two drinks) Ethanol Lactate 1-3 mM (resting) 10-15 mM (exercising) Ethanol Glucose NAD+ Lactate 2x NADH Acetate G6P F6P F1,6BP PEP Pyr Mitochondria Pyr OAA PEP Glucose ~10 mM (two drinks) ~100 mM ("21-for-21") Ethanol Lactate 1-3 mM (resting) 10-15 mM (exercising) Ethanol Glucose NAD+ Lactate 2x NADH Acetate G6P F6P F1,6BP PEP Pyr Mitochondria Pyr OAA PEP B. Conversion of "Glucogenic" Amino Acids into Glucose Starvation, Fasting (Skeletal Muscle) Brain PROTEINS Protein-rich Diet PROTEINS Glucose Amino acids PROTEINS PROTEINS Other Carbohydrates Oxaloacetate GNG Glycogen Glucose-6-P Pyruvate Acetyl-CoA NADH ATP Glucogenic Amino Acids Amino acids Ala, Cys, Gly, Ser, Thr Asp, Asn Met, Thr, Val Arg, Glu, Gln, His, Pro Degradation products Pyr OAA Succinyl-CoA OAA -KGA OAA Glucose Blood Cytosol Amino Acids Glucose Glc-6-P Phosphatase Amino Acids Amino Acid Degradation G6P F6P F1,6BP NAD+ NADH ? PEP Pyr Pyr NADH NAD+ Fru-1,6-BP Phosphatase OAA OAA Malate Malate Liver NADH NAD+ Electron Shuttles A. Malate-Oxaloacetate Shuttle Cytosol ASP KGA GLUTAMATE OAA NADH + H NAD+ MALATE Outer Inner Membranes + Mitochondria ASP KGA GLUTAMATE OAA indirect NADH + H+ NAD+ MALATE p. 50 Stoichiometry of Glycolysis (G ca. - 63 kJ mol-1) 1 Glc + 2 ADP + 2 Pi + 2 NAD+ 2 Pyr + 2 ATP + 2 NADH + 2 H2O Stoichiometry of Gluconeogenesis (G ca. -16 kJ mol-1) 2 Pyr + 4 ATP + 2 GTP + 2 NADH + 6 H2O 1 Glc + 4 ADP + 2 GDP + 2 NAD+ + 6 Pi Extra Cost of Gluconeogenesis: 4 ATP per glucose ...
View Full Document

Ask a homework question - tutors are online