{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

calculus 3 test 1a (2)

# calculus 3 test 1a (2) - v 490 I ’ L>)3 L J/éh...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: v 490' I ’ L> )3 L J/éh) f’ .X. "L \’ (xiv _#,_ x7 x. *x/ 7 r-n 17/ 7. (5points) Assuming that the limit, lim(x‘y)_,(0.o) Lit”; exists, ﬁnd its value. 7 E (Ck)? (b) 1 (c) —2 (d) 4 (e) none ofthe above 8. (5 points) Determine ﬂ by differentiating im licitly iven x3 -— x + yz2 — 23 = 0. 6): p g if 4' 1 f f: 11".- (a)yz—3x2—2yz—3zz " 7” ”Y 9‘23; ‘ ’ ’ yZ—sz . yz—Sal—Zyz _ r: I; ,,, ,- @2y2—322 (C) —321 :2“ *‘2' :r _’ ./ 2 7 2, 4:2 ”I-Q‘; (d) % (e) none of the above » f ’ ~ 7. _” 3/: ’ZM - 311 9. (5 points) Let a be a constant. The vector function r(t) = t i+_a j + (a2 —/ t2) k is continuous at t = 0 because (1) r(O) exists (ii) lim,_,o r(t) 9H6” (t i+a j+ (a2 — t2)k) = 0 ﬂ (iii) r(O) = a j + a2 k (iv) lim,_,o r(t) = lim,_,o (t i+ aj+ (a2 — [2) k) = a j + a2 k (a) (i) only (b) (iv) only (c) (i), (ii), a (1 (iii) (52)), (iii), and (iv) (e) (ii) and (iii) 10. (5 points) The domain of the function f (x, y) = :3: is / (a) R2 — {(x, y) | y2 =_ x2} (b) all real numbers A) /’k (c) {(x, y) I y2 = x2} (id-{k - {(x, y) ly = x} / (e) [R — {(x, y) Iyl/é x2} ...
View Full Document

{[ snackBarMessage ]}