# Lec02 - Visualizing Data Devore-Berk Chp 1 Visualizing...

This preview shows pages 1–16. Sign up to view the full content.

Visualizing Data Devore-Berk Chp 1 Visualizing Quantitative Data, Tufte E. R., Graphics Press, 2001 Graphical Methods for Data Analysis , Chambers J., Cleveland, B. Kleiner, and P. Tukey, Duxbury Press, Boston, 1983 Exploratory Data Analysis , Tukey J., Addison-Wesley Pub Co., 1977

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Observation and Perspective
Tufte: Graphics reveal data. X1 Y1 X2 Y2 X3 Y3 X4 Y4 10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58 8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76 13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71 9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84 11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47 14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04 6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25 4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50 12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56 7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91 5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Tufte Script par(mfrow=c(2,2)) plot(tufte\$X1,tufte\$Y1,  xlim=c(0,20),ylim=c(0,15),cex=1.5) plot(tufte\$X2,tufte\$Y2,  xlim=c(0,20),ylim=c(0,15),cex=1.5) plot(tufte\$X3,tufte\$Y3,  xlim=c(0,20),ylim=c(0,15),cex=1.5) plot(tufte\$X4,tufte\$Y4,  xlim=c(0,20),ylim=c(0,15),cex=1.5) par(mfrow=c(1,1))

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Communicate complex ideas with clarity, precision, and efficiency – Tufte Show the data Substance rather than method Avoid distortion Present many numbers in a small space Make large data sets coherent Encourage eye to make comparisons Reveal data at several levels Purpose: Description, exploration, tabulation, decoration Closely integrated with statistical and verbal descriptions
Napoleon’s Russian Campaign Minard (1885) Tufte (2001) http://www.math.yorku.ca/SCS/Gallery/re-minard.html

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Leaves data (histogram) hist(leaves)
N = 132 Median = 68 Quartiles = 58, 79 Decimal point is 1 place to the right of the colon 2 : 7 3 : 3 : 689 4 : 3 4 : 555688 5 : 00022223344 5 : 556777778888899 6 : 00001111122223344 6 : 5556667888888999 7 : 0011222233444 7 : 5555556666788899999 8 : 0000112222344 8 : 555567777999 9 : 01234 stem(leaves)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Boxplot boxplot(leaves)
Exploratory Analysis Class Data Sex, Foot size (cm), Head Circumference (cm)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Class Data Class    Sex Foot Head   1   F   23  9.5  2   F   20 54.0  3   F   23 59.0  4   M   26 57.0  5   F   26 58.0  6   M   26 56.0 . . .
dim(Class) [1] 98  3 Class[1:4,1:3]   Sex Foot Head  1   F   23  9.5 2   F   20 54.0 3   F   23 59.0 4   M   26 57.0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Accessing Elements Class\$Foot[1:5]   23 20 23 26 26 Class[1:5,2]   23 20 23 26 26  Class[1:5,"Foot"]   23 20 23 26 26

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/08/2009 for the course BTRY 3010 taught by Professor Sullivan,p. during the Fall '07 term at Cornell.

### Page1 / 44

Lec02 - Visualizing Data Devore-Berk Chp 1 Visualizing...

This preview shows document pages 1 - 16. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online