{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

8_Signal_Analysis - Chapter 8 Spectral Content of a Signal...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
187 Chapter 8 Spectral Content of a Signal Chapter Outline 8.1 AMPLITUDE AND PHASE SPECTRA ................................................... 189 8.1.1 Introduction .................................................................................................................................. 189 8.1.2 Periodic Signals ......................................................................................................................... 190 8.1.3 Aperiodic Signals ...................................................................................................................... 197 8.1.4 Fourier Series and the Generalized Fourier Transform ........................................... 199 8.2 ENERGY AND POWER SIGNALS ......................................................... 200 8.2.1 Introduction .................................................................................................................................. 200 8.2.2 Definitions .................................................................................................................................... 200 8.3 ENERGY SPECTRAL DENSITY ........................................................... 204 8.3.1 Parseval’s Theorem .................................................................................................................. 204 8.3.2 Signal Bandwidth ...................................................................................................................... 207 8.4 POWER SPECTRAL DENSITY ............................................................. 213 8.4.1 Definition ...................................................................................................................................... 213 8.4.2 Examples ....................................................................................................................................... 214 8.5 POWER CALCULATIONS FOR PERIODIC SIGNALS .......................... 215 8.5.1 Introduction .................................................................................................................................. 215 8.5.2 Power of Periodic Signals ..................................................................................................... 216 8.5.3 Parseval’s Theorem .................................................................................................................. 217 8.5.4 Power Spectral Density of a Fourier Series ................................................................. 220 8.6 SPECTRAL CONTENT OF A SIGNAL: AN EXAMPLE ........................ 223 8.6.1 Introduction .................................................................................................................................. 223 8.6.2 Approximation of Periodic Signals Using Fourier Series ...................................... 224 8.6.3 Examples ....................................................................................................................................... 226 8.6.4 Summary ....................................................................................................................................... 231 8.7 STATIC NONLINEARITIES ................................................................. 232 8.7.1 A Nonlinear System ................................................................................................................. 232 8.7.2 Harmonic Distortion ................................................................................................................. 233 8.7.3 Total Harmonic Distortion .................................................................................................... 237 8.8 MATLAB EXPERIMENTS .................................................................... 239 8.8.1 Introduction .................................................................................................................................. 239 8.8.2 Square Wave ............................................................................................................................... 239 8.8.3 Modulated Square Wave ....................................................................................................... 241 8.9 CHAPTER SUMMARY ......................................................................... 243 8.9.1 Spectral Content of a Signal ............................................................................................... 243 8.9.2 Classification of Signals ........................................................................................................ 244 8.10 HOMEWORK FOR CHAPTER 8 ......................................................... 245
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
188 Chapter 8 Spectral Content of a Signal Signals, as defined in Chapter 5, are functions of time which represent a physical variable. To understand the physical variable, we analyze the function of time, that is, the signal. Signal analysis is the systematic investigation of the properties of a mathematical model of a physical variable and the underlying physical process. The purpose of this investigation is to uncover properties of the physical process from the signal that are not immediately apparent from the physical process itself. In this chapter we begin the investigation of the properties of these representations of signals. The tools we have to analyze a signal depend on how we represent the signal. For example, a signal could be represented by an oscilloscope trace, or an analytical expression. Taking the derivative of the analytical expression may be easy, but taking the derivative of the oscilloscope trace may be nearly impossible. The central idea in signal analysis is to introduce a signal representation that gives insight into the characteristics of the signal. Generally, that means the signal representation should lend itself to numerical computation and graphical representation in such a way that the essential characteristics of the signal are exposed. This is a rather tall order, but several very successful signal representations have been introduced in the last chapter. These two representations are the Fourier series and the Fourier transform. We will study these two representations in this chapter. The Fourier series represents the signal as a sum of cosines with given frequencies. The Fourier transform of a signal is a function of a frequency variable ϖ . It is the purpose of this chapter to develop the idea that these signal representations depend on frequency. This concept is known as the spectral content of a signal. This concept plays two important roles in signal analysis. First, the
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern