This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: SYSTEMS OF PARTICLES E XERCISES Section 9.1 Center of Mass 12. Take the x axis along the seesaw in the direction of the father, with origin at the center. The center of mass of the child and her father is at the origin, so , cm c c f f x m x m x = = + where the masses are given, and (3.5 m)/2 c x =  (half the length of the seesaw in the negative x direction). Thus, / (28/65)(1.75 m) 75.4 cm f c c f x m x m =  = = from the center. 13. I NTERPRET This problem is about center of mass. Our system consists of three masses located at the vertices of an equilateral triangle. If two masses are known and the location of the center of mass is also known, then the third mass can be calculated. D EVELOP The center of mass of a system of particles is given by Equation 9.2: cm i i i i i i i i m r m r r m M = = r r r We shall choose xy coordinates with origin (0,0) at the midpoint of the base. With this arrangement, the center of the mass is located at cm x = and cm 3 /2, y y = where y 3 is the position of the third mass (and of course, 1 2 y y = = for the equal masses 1 2 m m m = = on the base). E VALUATE Using Equation 9.2, the y coordinate of the center of mass is 1 1 2 2 3 3 3 3 3 cm cm 1 2 3 3 3 (0) (0) (2 ) 2 m y m y m y m m m y m y y m m m m m m m m + + + + = = = + + + + + Solving for 3 , m we have 3 3 2 2 , m m m + = or 3 2 . m m = A SSESS From symmetry consideration, it is apparent that cm 0. x = On the other hand, we have 2 m m m + = at the bottom two vertices of the triangle. Since cm 3 /2, y y = i.e., cm y is halfway to the top vertex, we expect the mass there to be 2 m (See Example 9.2). 14. With origin at the barbells center, 1 75 cm, x =  and 2 75 cm. x = For part (a): (60 kg)( 75 cm) (60 kg)(75 cm) 60 kg 60 kg cm x + = = + For part (b) : (50 kg)( 75 cm) (80 kg)(75 cm) 17.3 cm 50 kg 80 kg cm x + = = + (toward the heavier mass). The addition of 75 cm to the above coordinates transforms these answers to the frame of Example 9.1. 15. I NTERPRET This problem is about locating the center of mass. Our system consists of three equal masses located at the vertices of an equilateral triangle of side L . D EVELOP We take xy coordinates with origin at the center of one side as shown. The center of mass of a system of particles is given by Equation 9.2: 9.1 9 9.2 Chapter 9 cm i i i i i i i i m r m r r m M = = r r r E VALUATE From the symmetry (for every mass at x , there is an equal mass at ), x we have cm 0. x = As for cm , y since y = for the two masses on the xaxis, and 3 3 2 sin 60 L y L = = for the third mass, Equation 9.2 gives 1 1 2 2 3 3 cm 1 2 3 (0) (0) 3/2 3 0.289 6 m y m y m y m m mL y L L m m m m m m + + + + = = = = + + + + A SSESS From symmetry consideration, it is apparent that cm 0. x = On the other hand, we have 2 m m m + = at the bottom two vertices of the triangle, and m at the top of the vertex. Therefore, we should expect cm y to be one third of 3 . y This indeed is the case, as cm y can be rewritten as...
View
Full
Document
This note was uploaded on 09/12/2009 for the course PH PH101 taught by Professor Prof.kim during the Spring '09 term at Korea Advanced Institute of Science and Technology.
 Spring '09
 Prof.Kim
 Physics, Center Of Mass, Mass

Click to edit the document details