Chapter 2 Data Collection

Chapter 2 Data Collection - Data Collection Professor...

Info icon This preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Click to edit Master subtitle style   ©  Professor Thomas R.  11 Data Collection Professor Thomas R. Sexton College of Business Stony Brook University
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  22 Examples of Business Data n Customer satisfaction survey n Transactions data base n Human resources data base n Store-level data within a chain n Stock prices and indices n Firm-level financial data n Market share data
Image of page 2
  ©  Professor Thomas R.  33 Census or Sample? n Census n Collect data on every member of the  population n Emphasis on data summary and  description n Sample n Collect data on a subset of the population
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  44 Why Sample? n Very large (even infinite) population n Wal-Mart customers over past year n Limited time n Decision deadlines n Limited resources n Money and people n Limited data base n Missing variables n Destructive testing
Image of page 4
  ©  Professor Thomas R.  55 Populations and Samples Target Population:   Items you wish to  study.  Size =  N . Sampling Frame:  Set  from which you select  sample items. Sample:  Selected  items.  Size =  n . Parameter:  Numerical  characteristic of the  target population. Statistic:  Numerical  value calculated from  the sample.
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  66 Coverage Error and Selection  Bias n Coverage error  occurs if the sampling  frame does not match the target  population.  This causes the sample  statistic to be a poor estimate of the  population parameter. n Sample statistic will be biased with  respect to the population parameter.  There will be systematic error in your 
Image of page 6
  ©  Professor Thomas R.  77 Some Members of T Cannot  Be Sampled F T
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  88 Example n Target Population:  Stony Brook  undergraduate students n Sampling Frame:  Undergraduate  students registered for at least one  credit this semester. n Misses students who are taking a leave  of absence this semester.
Image of page 8
  ©  Professor Thomas R.  99 Sample May Contain  Nonmembers of T F T
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  1010 Example n Target Population:  Stony Brook  undergraduate students n Sampling Frame:  Students with a valid  Stony Brook ID. n Includes graduate students.
Image of page 10
  ©  Professor Thomas R.  1111 Some Members of T Cannot Be Sampled  & Sample May Contain Nonmembers of T F T
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
  ©  Professor Thomas R.  1212 Example n Target Population:  Stony Brook  undergraduate students n Sampling Frame:  Residents of  undergraduate student residence halls. n Omits commuter students and includes  spouses.
Image of page 12
  ©  Professor Thomas R.  1313 Other Types of Errors n Measurement error:  Arises from poor  measurement techniques.  Can also  lead to bias.
Image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern