Chapter 12 - Chapter 12: Determining Optimal Level of...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 12: Determining Optimal Level of Product Availability Exercise Solutions 1. = + = + = 120 50 50 * C C C CSL o u u 0.2941 Optimal lot-size = ) , , ( * * CSL O NORMINV = = NORMINV(0.2941,100,40) = 78.34 Given that p = $200, s = $30, c = $150: Expected profits = ( p s ) NORMDIST(( O )/ , 0, 1, 1) ( p s ) NORMDIST((O )/ , 0, 1, 0) O (c s) NORMDIST(O, , , 1) + O (p c) [1 NORMDIST(O, , , 1)] = $2,657 Expected overstock = ( O ) NORMDIST ( (O )/ , 0, 1, 1) + NORMDIST ( (O )/ , 0, 1, 0) = 7.41 Expected understock = ( O )[1 NORMDIST ( (O )/ , 0, 1, 1)] + NORMDIST ( (O )/ , 0, 1, 0) = 29.07 EXCEL worksheet 12-1 illustrates these computations 2. With revised forecasting: = + = + = 120 50 50 * C C C CSL o u u 0.2941 Optimal lot-size = ) , , ( * * CSL O NORMINV = = NORMINV(0.2941,100,15) = 91.88 Given that p = $200, s = $30, c = $150: Expected profits = ( p s ) NORMDIST(( O )/ , 0, 1, 1) ( p s ) NORMDIST((O )/ , 0, 1, 0) O (c s) NORMDIST(O, , , 1) + O (p c) [1 NORMDIST(O, , , 1)] = $4,121 1 Expected overstock = ( O ) NORMDIST ( (O )/ , 0, 1, 1) + NORMDIST ( (O )/ , 0, 1, 0) = 2.78 Expected understock = ( O )[1 NORMDIST ( (O )/ , 0, 1, 1)] + NORMDIST ( (O )/ , 0, 1, 0) = 10.9 EXCEL worksheet 12-2 illustrates these computations 3. Mean demand during lead time =DL= (2000)(2) = 4000 Standard deviation of demand during lead time = L = L D = 500 2 = 707 Safety inventory = ROP DL = 6000 4000 = 2000 CSL = NORMDIST (6000, 4000, 707, 1) = 0.9977 Cost of overstocking = (0.25)(40) = $10 Justifying cost of understocking: u C = 411 $ 52 2000 ) 9977 . 1 ( 10000 10 ) 1 ( = - =- D year CSL HQ Optimal CSL = 8889 . 10 80 80 = + = + C C C o u u Optimal safety stock = (NORMSINV (0.8889)) (707) = 863 units EXCEL worksheet 12-3 illustrates these computations 4. Using the current policy: = + = + = 10 30 30 * C C C CSL o u u 0.75 Optimal lot-size = ) , , ( * * CSL O NORMINV = = NORMINV(0.75,20000,10000) = 26,745 Given that p = $60, s = $20, c = $30: Expected profits = ( p s ) NORMDIST(( O )/ , 0, 1, 1) 2 ( p s ) NORMDIST((O )/ , 0, 1, 0) O (c s) NORMDIST(O, , , 1) + O (p c) [1 NORMDIST(O, , , 1)] = $472,889 Expected overstock = ( O ) NORMDIST ( (O )/ , 0, 1, 1) + NORMDIST ( (O )/ , 0, 1, 0) = 8,236 Using South America option: = + = + = 5 30 30 * C C C CSL o u u 0.857 Optimal lot-size = ) , , ( * * CSL O NORMINV = = NORMINV(0.857,20000,10000) = 30,676 Given that p = $60, s = $25, c = $30: Expected profits = ( p s ) NORMDIST(( O )/ , 0, 1, 1) ( p s ) NORMDIST((O )/ , 0, 1, 0) O (c s) NORMDIST(O, , , 1) + O (p c) [1 NORMDIST(O,...
View Full Document

Page1 / 14

Chapter 12 - Chapter 12: Determining Optimal Level of...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online