Tables - Mathematical Tables Composed by Vincent Verdult...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mathematical Tables Composed by Vincent Verdult Department of Electrical Engineering Delft University of Technology e-mail: V.Verdult@et.tudelft.nl November, 1997 Contents 1 Trigonometric Identities 2 2 Trigonometric Functions 3 3 Hyperbolic Functions 3 4 Series 4 5 Inequalities 6 6 Differential and Integral Calculus 6 7 Integral Table 8 8 Standard Limits 11 9 Convolutions 12 10 Dirac Delta Function 12 11 Fourier Transform 13 12 Laplace Transform 21 13 z-Transform 25 1 Trigonometric Identities sin( x 2 ) = cos x cos( x 2 ) = sin x sin( x y ) = sin x cos y cos x sin y cos( x y ) = cos x cos y sin x sin y tan( x y ) = tan x tan y 1 tan x tan y 2sin x sin y = cos( x- y )- cos( x + y ) 2cos x cos y = cos( x- y ) + cos( x + y ) 2sin x cos y = sin( x- y ) + sin( x + y ) sin x + sin y = 2sin ( x + y ) 2 cos ( x- y ) 2 sin x- sin y = 2cos ( x + y ) 2 sin ( x- y ) 2 cos x + cos y = 2cos ( x + y ) 2 cos ( x- y ) 2 cos x- cos y =- 2sin ( x + y ) 2 sin ( x- y ) 2 tan x tan y = sin( x y ) cos x cos y sin2 x = 2sin x cos y cos2 x = cos 2 x- sin 2 x tan2 x = 2tan x 1- tan 2 x 2sin 2 x = 1- cos2 x 2cos 2 x = 1 + cos2 x 2 4sin 3 x = 3sin x- sin3 x 4cos 3 x = 3cos x + cos3 x 8sin 4 x = 3- 4cos2 x + cos4 x 8cos 4 x = 3 + 4cos2 x + cos4 x a cos x- b sin x = r cos( x + ) where r = a 2 + b 2 = arctan b a a = r cos b = r sin 2 Trigonometric Functions sin x = e jx- e- jx 2 j cos x = e jx + e- jx 2 tan x = sin x cos x cos 2 x + sin 2 x = 1 e jx = cos x j sin x 3 Hyperbolic Functions sinh x = e x- e- x 2 cosh x = e x + e- x 2 tanh x = sinh x cosh x cosh 2 x- sinh 2 x = 1 e x = cosh x sinh x arcsinh x = ln( x + x 2 + 1) arccosh x = ln( x + x 2- 1) , x 1 arctanh x = 1 2 ln 1 + x 1- x , | x | < 1 3 4 Series Series Expansions f ( x + a ) = n =0 x n n ! f ( n ) ( a ) = f ( a ) + x 1! f ( a ) + x 2! f ( a ) + ... Taylors series e x = n =0 x n n ! = 1 + x 1! + x 2 2! + x 3 3! + ..., | x | < sin x = n =0 (- 1) n x 2 n +1 (2 n + 1)! = x- x 3 3! + x 5 5!- x 7 7! + ..., | x | < cos x = n =0 (- 1) n x 2 n (2 n )! = 1- x 2 2! + x 4 4!- x 6 6! + ..., | x | < sinh x = n =0 x 2 n +1 (2 n + 1)! = x + x 3 3! + x 5 5! + x 7 7! + ..., | x | < cosh x = n =0 x 2 n (2 n )! = 1 + x 2 2! + x 4 4! + x 6 6! + ..., | x | < arcsin x = n =0 (2 n )! 2 2 n ( n !) 2 x 2 n +1 2 n + 1 = x + 1 2 x 3 3 + 3 8 x 5 5 + ..., | x | 1 arccos x = 2- arcsin x = 2- n =0 (2 n )! 2 2 n ( n !) 2 x 2 n +1 2 n + 1 , | x | 1 arctan x = n =0 (- 1) n x 2 n +1 2 n + 1 = x- x 3 3 + x 5 5- x 7 7 + ..., | x | 1 arctanh x = n =0 x 2 n +1 2 n + 1 = x + x 3 3 + x 5 5 + x 7 7 + ..., | x | < 1 ln(1 + x ) = n =1 (- 1) n +1 x n n = x- x 2 2 + x 3 3- x 4 4 + ..., | x | 1 1 1- x = n =0 x n = 1 + x + x 2 + x 3 + ..., | x | < 1 (1 + x ) a = n =0 a n x n = 1 + a 1 x + a 2 x 2 + a 3 x 3 + ..., | x | < 1 where a k = a ( a- 1) ( a- 2) ( a- k + 1) k !...
View Full Document

This document was uploaded on 09/19/2009.

Page1 / 28

Tables - Mathematical Tables Composed by Vincent Verdult...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online