{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ME 242 Lecture 4 1.28

# ME 242 Lecture 4 1.28 - 1 ME 242 Dynamics Eric Wang...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 ME 242 Dynamics January 28, 2009 Eric Wang Today’s Key Concepts Cartesian Coordinates • 2D motion • Coordinate transformation array Position Vector r P / O = xi + y j Velocity v P = d dt XYZ r P / O = dx dt i + x d dt XYZ i + dy dt j + y d dt XYZ j + dz dt k + z d dt XYZ k r P / O = xi + y j + zk 3D Kinematics • Position • Velocity • Acceleration v P = d dt XYZ r P / O = ˙ x i + ˙ y j + ˙ z k a P = d dt XYZ v P = ˙ ˙ x i + ˙ ˙ y j + ˙ ˙ z k r P / O = xi + y j + zk Given: V =11.31 ft/s Find: η 2 Solution: V =11.31 m/s v x = v cos η v y = v sin η v x v y Final Position: tan30 = 0.97 x 1 x 1 = 1.68 ft x 1 = y 1 x = y = Constant Acceleration v x = 11.31cos η v y = 11.31sin η x = y = x 1 = 1.68 y 1 = 0.97 v 1 x 2 = v x 2 + 2 a x ( x 1 − x ) v 1 y 2 = v y 2 + 2 a y ( y 1 − y ) Constant Acceleration v x = v x + a x t x =...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

ME 242 Lecture 4 1.28 - 1 ME 242 Dynamics Eric Wang...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online