ME 242 Lecture 8 02.06

ME 242 Lecture 8 02.06 - ME 242 Dynamics February 6, 2009...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1 ME 242 Dynamics February 6, 2009 Eric Wang Today’s Key Concepts Review of Chapter 2 • Cartesian Coordinates • Coordinate Transformation Array • Polar Coordinates • Path Coordinates • Relative Motion • Degrees of Freedom • Constraints Importance of Reference Frames Cartesian Coordinates • Position • Velocity • Acceleration v P = d dt XYZ r P / O = ˙ x i + ˙ y j + ˙ z k a P = d dt XYZ v P = ˙ ˙ x i + ˙ ˙ y j + ˙ ˙ z k r P / O = xi + y j + zk θ b 1 b 2 cos θ 0 0 0 0 1 cos θ -sin θ sin θ b 2 j i b 1 b 3 k θ TJO θ TJO θ j i cos θ cos θ b 1 = cos θ i + sin j b 2 = sin i + cos j 3 Special cases vdv = adx v 2 2 = v 1 2 + 2 a ( x 2 x 1 ) v 2 2 = v 1 2 + 2 a ( x ) dx x 1 x 2 x 2 = x 1 + v a ( v ) dv v 1 v 2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Polar (2D) & Cylindrical (3D) • Position • Velocity • Acceleration a P = ˙ r r ˙ θ 2 ) e r + (2˙ r ˙ + r ˙ ˙ ) e + ˙ ˙ z k r P / O = re r + zk v p = ˙ r e r + r ˙ e + ˙ z k Path Coordinates
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/19/2009 for the course ME 242 taught by Professor Kam during the Spring '06 term at Nevada.

Page1 / 4

ME 242 Lecture 8 02.06 - ME 242 Dynamics February 6, 2009...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online