ME 242 Lecture 33 04.27

ME 242 Lecture 33 04.27 - 1 ME 242 Dynamics Eric Wang...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 ME 242 Dynamics April 27, 2009 Eric Wang Today’s Key Concepts Chapter 8: 3D motion of Rigid Bodies We will only do kinematics in 3D • Spherical coordinates • Angular velocity in 3D • Angular acceleration in 3D Polar Coordinates a m = (˙ ˙ r − r ˙ θ 2 ) e r + (2˙ r ˙ θ + r ˙ ˙ θ ) e θ r m / O = re r v m = ˙ r e r + r ˙ θ e θ Polar Coordinates in 3D X Y Z Video Clip The Force is Strong X Y Z 2 Spherical Coordinates R m / O = Re R Introduce x-Z Plane R m / O = Re R = re r + R cos φ k 2 sets of polar coordinates r = R sin φ Coordinate Transformation Arrays cos θ 1 cos θ-sin θ sin θ e θ j i e r k k cos φ sin φ-sin φ cos φ 1 e θ e θ e r e φ e R k R m / O = Re R = R (sin φ e r + cos φ k ) = re r + R cos φ k Velocity & Acceleration a m = ( ˙ ˙ R − R ˙ φ 2 − R ˙ θ 2 sin 2 φ ) e R R m / O = Re R v m = ˙ R e R + R ˙ φ e φ + R ˙ θ sin φ e θ + 2 ˙ R ˙ φ + R ˙ ˙ φ − R ˙ θ 2 sin(2 φ ) 2 e φ + 2 ˙ R ˙...
View Full Document

This note was uploaded on 09/19/2009 for the course ME 242 taught by Professor Kam during the Spring '06 term at Nevada.

Page1 / 5

ME 242 Lecture 33 04.27 - 1 ME 242 Dynamics Eric Wang...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online