Unformatted text preview: % are periodic. % m the degree of the trig polynomial % output: % b_1, . .., b_{m+1} the Fourier coefficients of the % trigonometric polynomial % the trig polynomial may be evaluated using the % function sft_evaluate % method: % since b_k is a polynomial in exp(2*pi*i*(k1)/n), use % Horner's rule % n=length(y); b = zeros(m+1,1)+y(n); c=b; const = exp(2*pi*i/n); c(1) = 1; for k = 1:m c(k+1) = c(k)*const; end; for j=(n1):1:1 b=y(j) + b.*c; end; b = b*2/n; b(1)=0.5*b(1); if n == 2*m b(m+1)= 0.5*b(m+1); end;...
View
Full Document
 Spring '09
 ford
 Numerical Analysis, Fourier Series, Fourier coefficients, Trigonometric polynomial, Slow Fourier Transform

Click to edit the document details