hw_1_22_23_09

hw_1_22_23_09 - Ma 221 Homework Solutions Due Date January...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Ma 221 Homework Solutions Due Date : January 22 - 23 , 2009 2 . 2pg . 46 # 1 ̄ , 4 , 5 , 7 , 9 ̄ , 1 ̄ 1 ̄ , 15 , 1 ̄ 7 ̄ , 19 , 2 ̄ 1 ̄ , 2 ̄ 2 ̄ , 23 , 25 ( Underlined problems are not handed in ) In problems 1, 4 and 5, determine whether the given differential equation is separable. 1) dy dx 2 y 3 y 4 dx dy dx 2 y 3 y 4 dx dy 2 y 3 y 4 dx therefore, this equation is separable. 4.) ds dt t ln s 2 t 8 t 2 ds dt 2 t 2 ln s 8 t 2 ds dt 2 t 2 ln s 4  ds ln s 4 2 t 2 dt therefore, this equation is separable. 5.) s 2 ds dt s 1 st Writing the equation in the form ds dt s 1 st s 2 shows that the equation is not separable. In problems 7, 9, 11 and 15, solve the equation. 7.) dy dx 1 x 2 y 2 dy dx 1 x 2 y 2 y 2 dy 1 x 2 dx y 2 dy 1 x 2 dx 1 3 y 3 y 3 3 x x 3 C 9) dy dx y 2 sin x dy dx y 2 sin x   dy y 2 sin x dx dy y 2 sin x dx y e 2 x cos x C Ce 2 x cos x 11) dy dx sec 2 y 1 x 2 dy dx sec 2 y 1 x 2 dy sec 2 y dx 1 x 2 Using trigonemtric identities we have: 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
sec y 1 cos y and cos 2 y 1 2 1 cos2 y dy sec 2 y dx 1 x 2 1 y dy 2 dx 1 x 2 1 y dy 2 dx 1 x 2 1 2 y 1 2 sin2 y arctan x C 1 2 y y 4arctan x 4 C 1 2 y y x C 15.) y 1 dy ye cos x sin xdx 0 ye cos x sin xdx y 1 dy e cos x sin xdx y 2 dy Substituting: let u cos x du sin xdx du sin xdx e u du y 2 dy e u y 1 C e cos x y 1 C y 1 C e cos x In problems 17, 19, 21, 22, 23, and 25, solve the initial value problem. 17) y x 3 1 y , y 0 3 dy dx x 3 1 y   dy 1 y x 3 dx dy 1 y x 3 dx ln|1 y | |1 y | exp C 1 x 4 4 Ce x 4 4 Substituting the IC y 0 3 |1 3| Ce 0 4 4 | 2| C 2 |1 y | 2 e x 4 4 Since 1 y 0 1 3 0, on an interval containing x 0 one has 1 y x 0 and so |1 y x | y x 1 . The solution is then: 2
Background image of page 2
y 1 2 e x 4 4 y 2 e x 4 4 1 19.) dy d y sin , y 3 dy d y sin dy y sin d dy y sin d ln| y | cos C 1 | y | e cos C 1 y Ce cos because at the initial point, , y 3 0 3 y Ce cos Ce 1 C 3 e 1 y 3 e 1 e cos 3 e 1 cos 21) dy dx 2 y 1 cos x , y 0 dy 2 y 1 cos
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/22/2009 for the course MA MA221 taught by Professor Levine during the Spring '09 term at Stevens.

Page1 / 9

hw_1_22_23_09 - Ma 221 Homework Solutions Due Date January...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online