hw_3_3_09

# hw_3_3_09 - MA 221 Homework Solutions Due date March 3 2009...

This preview shows pages 1–3. Sign up to view the full content.

MA 221 Homework Solutions Due date : March 3 , 2009 7 . 4p g . 374 # 1 ̄ , 3 , 5 ̄ , 7 ̄ , 9 ̄ , 12 , 1 ̄ 5 ̄ , 1 ̄ 7 ̄ , 21 , 23 (Underlined problems are to be handed in) For problems 1,3, 5, 7, and 9, determine the inverse Laplace transform of the given function. 1 ̄ .) 6 s 1 4 From table 7.1 6 s 1 4 3! s 1 4 is the Laplace transform of e at t n with a 1 n 3 Therefore L 1 6 s 1 4  t e t t 3 3.) s 1 s 2 2 s 10 L 1 s 1 s 2 2 s 10 t L 1 s 1 s 1 2 3 2 t From table 7.1 L 1 s 1 s 1 2 3 2 is the Laplace transform of e at cos bt with a 1 b 3 Therefore L 1 s 1 s 1 2 3 2 t e t cos3 t 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
5 ̄ .) 1 s 2 4 s 8 L 1 1 s 2 4 s 8  t L 1 1 s 2 2 2 2  t 1 2 L 1 2 s 2 2 2 2  t 1 2 e 2 t sin2 t 7 ̄ .) 2 s 16 s 2 4 s 13 2 s 16 s 2 4 s 13 2 s 16 s 2 2 3 2 2 s 2 s 2 2 3 2 4 3 s 2 2 3 2 2 L 1 s 2 s 2 2 3 2  t 4 L 1 3 s 2 2 3 2  t 2 e 2 t cos3 t 4 e 2 t sin3 t 9 ̄ .) 3 s 15 2 s 2 4 s 10 3 s 15 2 s 2 4 s 10 3 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

hw_3_3_09 - MA 221 Homework Solutions Due date March 3 2009...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online