Proof 13.28 - t="@x /y...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
2.7wnds:Windows Vista6.1FchFC1244603373310D1244603721635newFormat {p=proof{p{s(i{r&1;})r{u=uProof;s=proof;}o{c=1;s="";l="";d@}u{t()}f(t{s(i{r=fol{t=" @x @y Likes(x, 1;})r&5;o&6;u{t()}f(t{s(i{r=fol{t="";b(s=a;,s=b;)g=@;}})r&15;o=fol_fst{c=1;s="";l=" ";d@f=1;}u{t()}},t{s(i{r=fol{t="Likes(a,b)";b()g=@;}})r{u="u\u2200 Elim";s=fol;}o=fol_fst{c=1;s="";l="";d@f=1;}u{t(p{si&12;ss=0;})}},t{s(i{r=fol{t="/y (Likes(a,y))";b()g=@;}})r{u="u\u2203 Intro";s=fol;}o=fol_fst{c=1;s="";l="";d@f=1;}u{t(p{si&35;ss=1.1;})}})},t{s(i{r=fol{
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: t="@x /y Likes(x,y)";b()g=@;}})r{u="u\u2200 Intro";s=fol;}o=fol_fst{c=1;s="";l="";d@f=1;}u{t(p{si&21;ss=1.;})}})}g{g(s{g{r=fol{ t="@x /y Likes(x, y)";b()c(l{n="t/f Connectives";a=true;},l{n=Identity;a=true;},l{n=Quantifiers;a=true;},l{n=ExMidd;a=f alse;},l{n=TwoTaut;a=false;},l{n=TautCon;a=true;},l{n="FO Con";a=false;},l{n=BabyAna;a=false;},l{n=TwoMore;a=false;},l{n=AnaCon;a=false;})g=" ";}}r{u=uFOLGoalRule;s=fol;}s(s=2;)o{c=1;s="The goal checks out.";l="The goal checks out.";d@}})}a=false;}}c=93596;s=148244;...
View Full Document

This note was uploaded on 09/24/2009 for the course PHIL 303 taught by Professor Staff during the Spring '08 term at University of Michigan.

Ask a homework question - tutors are online