{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

hw1_sol

# hw1_sol - EE 369 Homework 2 Solutions 4 points per...

This preview shows pages 1–4. Sign up to view the full content.

EE 369 Homework 2 Solutions 4 points per problem (except 8 points for E5) Section 1.1 10 (a) B ^ D (b) A ^ D (c) D --> (B V C) (d) B' ^ A (e) D --> C 13 Let H, K, A be the following statements: H : The horse is fresh K : The knight wins A : The armor is strong (a) H --> K (b) K --> (H ^ A) (c) K --> H (d) K <--> A (e) (A v H) --> K 17 (a),(b) please see the back of the textbook (c) A | B | A' | B' | (A' v B') | (A' v B')' | (A ^ (A' v B')') ------------------------------------------------------------- T | T | F | F | F | T | T T | F | F | T | T | F | F F | T | T | F | T | F | F F | F | T | T | T | F | F (d) A | B | (A ^ B) | A' | (A ^ B) --> A' --------------------------------------- T | T | T | F | F T | F | F | F | T F | T | F | T | T F | F | F | T | T (e) A | B | C | A-->B | AvC | BvC | [(AvC)-->(BvC)] | (A-->B) --> [(AvC)-->(BvC)] ------------------------------------------------------------------------------ T | T | T | T | T | T | T | T T | T | F | T | T | T | T | T T | F | T | F | T | T | T | T T | F | F | F | T | F | F | T F | T | T | T | T | T | T | T F | T | F | T | F | T | T | T F | F | T | T | T | T | T | T F | F | F | T | F | F | T | T is a tautology

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(f) A | B | B-->A | A-->(B-->A) ----------------------------- T | T | T | T T | F | T | T F | T | F | T F | F | T | T is a tautology (g) A | B | (A ^ B) | B' | A' | (B' v A') | (A ^ B) <--> (B' v A') ---------------------------------------------------------------- T | T | T | F | F | F | F T | F | F | T | F | T | F F | T | F | F | T | T | F F | F | F | T | T | T | F is a contradiction (h) A | B | B' | (A v B' ) | (A ^ B) | (A ^ B)' | (A v B' ) ^ (A ^ B)' -------------------------------------------------------------------- T | T | F | T | T | F | F T | F | T | T | F | T | T F | T | F | F | F | T | F F | F | T | T | F | T | T (i) A | B | C | AVB | C'| [(AvB)^C'] | A'| A'vC | [(AvB)^C']-->A'vC ------------------------------------------------------------------------------ T | T | T | T | F | F | F | T | T T | T | F | T | T | T | F | F | F T | F | T | T | F | F | F | T | T T | F | F | T | T | T | F | F | F F | T | T | T | F | F | T | T | T F | T | F | T | T | T | T | T | T F | F | T | F | F | F | T | T | T F | F | F | F | T | F | T | T | T 33 (a) We have to show that A-->B and A^B can be replaced by equivalent wffs that use only v and ' in any compound wff. We can show that A^B <==> (A')'^(B')' (see truth table below) <==> (A'vB')' (from De Morgan's law) (P <==> Q means P and Q are equivalent wffs as defined in page 8 of the text book), and A-->B <==> A'vB (see truth table below), hence any A-->B and A^B can be replaced by equivalent wffs that use only v and ' in any compound wff. A | B | A-->B | A' | B' | A'vB | (A')' | (B')' | A^B | (A')'^(B')' ------------------------------------------------------------------- T | T | T | F | F | T | T | T | T | T T | F | F | F | T | F | T | F | F | F F | T | T | T | F | T | F | T | F | F F | F | T | T | T | T | F | F | F | F
(b) We have to show that AvB and A^B can be replaced by equivalent wffs that use only --> and ' in any compound wff.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}