Ch05 Textbook Answers

Ch05 Textbook Answers - Chapter5 Exercises1,3,5,7and9

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 5 Exercises 1, 3, 5, 7 and 9 1.  Consider a lottery with three possible outcomes:  $125 will be received with probability .2 $100 will be received with probability .3 $50 will be received with probability .5 a. What is the expected value of the lottery? The expected value,  EV , of the lottery is equal to the sum of the returns weighted by  their probabilities: EV  = (0.2)($125) + (0.3)($100) + (0.5)($50) = $80. b. What is the variance of the outcomes? The variance,  σ 2 , is the sum of the squared deviations from the mean, $80, weighted by  their probabilities: σ 2  = (0.2)(125 - 80) 2  + (0.3)(100 - 80) 2  + (0.5)(50 - 80) 2  = $975. c. What would a risk-neutral person pay to play the lottery? A risk-neutral person would pay the expected value of the lottery: $80. 3.  Richard is deciding whether to buy a state lottery ticket.  Each ticket costs $1, and the  probability of winning payoffs is given as follows: Probability Return 0.50 $0.00 0.25 $1.00 0.20 $2.00 0.05 $7.50 a. What is the expected value of Richard’s payoff if he buys a lottery ticket?  What is  the variance?
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The expected value of the lottery is equal to the sum of the returns weighted by their  probabilities: EV  = (0.5)($0) + (0.25)($1.00) + (0.2)($2.00) + (0.05)($7.50) =  $1.025 The variance is the sum of the squared deviations from the mean, $1.025, weighted by  their probabilities: σ 2  = (0.5)(0 – 1.025) 2  + (0.25)(1 – 1.025) 2  + (0.2)(2 – 1.025) 2  +  (0.05)(7.5 – 1.025) 2 , or σ 2  = 2.812. b. Richard’s   nickname   is   “No-Risk   Rick”   because   he   is   an   extremely   risk-averse  individual.  Would he buy the ticket? An extremely risk-averse individual would probably not buy the ticket.  Even though  the expected value is higher than the price of the ticket, $1.025 > $1.00, the difference  is not enough to compensate Rick for the risk.  For example, if his wealth is $10 and he  buys a $1.00 ticket, he would have $9.00, $10.00, $11.00, and $16.50, respectively,  under the four possible outcomes.  If his utility function is  U  =  W 0.5 , where  W  is his  wealth, then his expected utility is: EU = 0.5 ( 29 9 0.5 ( 29 + 0.25 ( 29 10 0.5 ( 29 + 0.2 ( 29 11 0.5 ( 29 + 0.05 ( 29 16.5 0.5 ( 29 = 3.157. This is less than 3.162, which is his utility if he does not buy the ticket (
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/24/2009 for the course ECON 2296 taught by Professor Gray during the Spring '09 term at Langara.

Page1 / 6

Ch05 Textbook Answers - Chapter5 Exercises1,3,5,7and9

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online