lineqs - EE236A(Fall 2007-08 Lecture 2 Linear inequalities...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EE236A (Fall 2007-08) Lecture 2 Linear inequalities • vectors • inner products and norms • linear equalities and hyperplanes • linear inequalities and halfspaces • polyhedra 2–1 Vectors (column) vector x ∈ R n : x = x 1 x 2 . . . x n • x i ∈ R : i th component or element of x • also written as x = ( x 1 , x 2 , . . . , x n ) some special vectors: • x = 0 ( zero vector ): x i = 0 , i = 1 , . . . , n • x = 1 : x i = 1 , i = 1 , . . . , n • x = e i ( i th basis vector or i th unit vector ): x i = 1 , x k = 0 for k negationslash = i ( n follows from context) Linear inequalities 2–2 Vector operations multiplying a vector x ∈ R n with a scalar α ∈ R : αx = αx 1 . . . αx n adding and subtracting two vectors x , y ∈ R n : x + y = x 1 + y 1 . . . x n + y n , x − y = x 1 − y 1 . . . x n − y n x . 75 x y 1 . 5 y . 75 x + 1 . 5 y Linear inequalities 2–3 Inner product x , y ∈ R n ( x, y ) := x 1 y 1 + x 2 y 2 + ··· + x n y n = x T y important properties • ( αx, y ) = α ( x, y ) • ( x + y, z ) = ( x, z ) + ( y, z ) • ( x, y ) =...
View Full Document

This note was uploaded on 09/26/2009 for the course CAAM 236 taught by Professor Dr.vandenber during the Spring '07 term at Monmouth IL.

Page1 / 7

lineqs - EE236A(Fall 2007-08 Lecture 2 Linear inequalities...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online