hw 3 - 1 The arc can be parameterized by t 2cos t,2sin t 0...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
1. The arc can be parameterized by:     2cos ,2sin 0 2 t t t t   The required integral is: 0 2 0 22 2 2sin , 2cos 2sin ,2cos 4sin 4cos 2 t t t t dt t tdt   2. Using the Divergence Theorem: 111 000 3 div 4 2 G dS dV z ydxdydz      F n F 4.             10 , 2 , 2 10 ,2 ,2 At 3, 1,2 , 50,4, 2 V r x z z y E r x z z y P E P     5. In cylindrical coordinates: Note that     ˆ ˆ 11 ˆ ˆˆ 0 4 0 0 8 0 4 8 r H r z z zz         
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 2

hw 3 - 1 The arc can be parameterized by t 2cos t,2sin t 0...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online