Vector_Notes_Week_2

# Vector_Notes_Week_2 - EM Research Group Cartesian...

This preview shows pages 1–5. Sign up to view the full content.

EM Research Group Cartesian (Rectangular) to Cylindrical Transformation Coordinate Transformation z z x y tan y x 1 2 2 = = φ + = ρ x y z ρ ˆ φ ˆ z ˆ ( ) ( ) r r P z , , P = φ ρ r r φ ρ z Unit Vector Transformation () () z ˆ z ˆ cos y ˆ sin x ˆ ˆ sin y ˆ cos x ˆ ˆ = φ + φ = φ φ + φ = ρ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
EM Research Group Cartesian/Cylindrical Conversion (continued) () ( ) ( ) ( ) ( ) ) () () ( ) 1 z ˆ z ˆ 0 ˆ z ˆ 0 ˆ z ˆ 0 z ˆ y ˆ cos ˆ y ˆ sin ˆ y ˆ 0 z ˆ x ˆ sin ˆ x ˆ cos ˆ x ˆ = = φ = ρ = φ = φ φ = ρ = φ = φ φ = ρ z y x A z ˆ A y ˆ A x ˆ + + = A r ( ) ( ) ( ) ( ) ( ) () () () () () z z y x z y x z y x y x z y x A A z ˆ z ˆ A y ˆ z ˆ A x ˆ z ˆ z ˆ A cos A sin A A z ˆ ˆ A y ˆ ˆ A x ˆ ˆ ˆ A sin A cos A A z ˆ ˆ A y ˆ ˆ A x ˆ ˆ ˆ A = + + = = φ + φ = φ + φ + φ = φ = φ + φ = ρ + ρ + ρ = ρ = φ ρ A A A r r r z A z ˆ A ˆ A ˆ + φ + ρ = φ ρ A r ( ) ( ) ( ) ( ) ( ) () () () ( ) ( ) z z z z y z x A A z ˆ z ˆ A ˆ z ˆ A ˆ z ˆ z ˆ A cos A sin A A z ˆ y ˆ A ˆ y ˆ A ˆ y ˆ y ˆ A sin A cos A A z ˆ x ˆ A ˆ x ˆ A ˆ x ˆ x ˆ A = + φ + ρ = = φ + φ = + φ + ρ = = φ φ = + φ + ρ = = φ ρ φ ρ φ ρ φ ρ φ ρ A A A r r r Cartesian-to-Cylindrical Cylindrical-to-Cartesian … some facts…
EM Research Group Example: Position Vector Goal: Convert position vector from Cartesian to Cylindrical Coordinates () ( ) z z ˆ cos y sin x ˆ sin y cos x ˆ r z ˆ cos r sin r ˆ sin r cos r ˆ z z ˆ y y ˆ x x ˆ z y x y x + φ + φ φ + φ + φ ρ = + φ + φ φ + φ + φ ρ = + + = r r r r r r Recall… φ ρ = φ ρ = sin y cos x Hence… ( ) z z ˆ ˆ z z ˆ cos sin cos sin ˆ sin cos ˆ 2 2 + ρ ρ = + φ φ ρ + φ φ ρ φ + φ ρ + φ ρ ρ = r r r r

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
EM Research Group Conversion of Cylindrical to Rectangular Components and Coordinates Convert the following vector field from cylindrical to Cartesian components and coordinates : facts… () 2 2 2 y x y sin x cos + = ρ ρ = φ ρ = φ () ( ) ( ) 5 z ˆ 2 ˆ cos 3 ˆ ρ φ φ ρ = r A r r ( ) ( ) ()( ) ( ) φ ρ + φ = + φ ρ φ φ = + ρ φ φ ρ = = sin 2 cos 3 0 5 sin 2 cos cos 3 5 z ˆ x ˆ 2 ˆ x ˆ cos 3 ˆ x ˆ x ˆ A 2 x A r ( ) ( ) ()() ( ) () () () φ ρ φ φ = + φ ρ φ φ = + ρ φ φ ρ = = cos 2 cos sin 3 0 5 cos 2 sin cos 3 5 z ˆ y ˆ 2 ˆ y ˆ cos 3 ˆ y ˆ y ˆ A y A r ( ) ( ) 5 1 5 0 2 0 cos 3 5 z ˆ z ˆ 2 ˆ z ˆ cos 3 ˆ z ˆ z ˆ
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 09/27/2009 for the course ECE 280 taught by Professor Mukkamala/udpa during the Spring '08 term at Michigan State University.

### Page1 / 15

Vector_Notes_Week_2 - EM Research Group Cartesian...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online